메뉴 건너뛰기




Volumn , Issue , 2014, Pages 537-546

Predicting trending messages and diffusion participants in microblogging network

Author keywords

Diffusion prediction; Social influence analysis; Social network

Indexed keywords

DATA PROCESSING; FORECASTING; INFORMATION RETRIEVAL; SOCIAL NETWORKING (ONLINE);

EID: 84904572119     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2600428.2609616     Document Type: Conference Paper
Times cited : (36)

References (29)
  • 1
    • 65449152304 scopus 로고    scopus 로고
    • Influence and correlation in social networks
    • A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation in social networks. In SIGKDD, pages 7-15, 2008.
    • (2008) SIGKDD , pp. 7-15
    • Anagnostopoulos, A.1    Kumar, R.2    Mahdian, M.3
  • 2
    • 79952397059 scopus 로고    scopus 로고
    • Everyone?s an influencer: Quantifying influence on twitter
    • E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone?s an influencer: quantifying influence on twitter. In WSDM, pages 65-74, 2011.
    • (2011) WSDM , pp. 65-74
    • Bakshy, E.1    Hofman, J.M.2    Mason, W.A.3    Watts, D.J.4
  • 3
    • 84889606830 scopus 로고    scopus 로고
    • Multimedia summarization for trending topics in microblogs
    • J. Bian, Y. Yang, and T.-S. Chua. Multimedia summarization for trending topics in microblogs. In CIKM, pages 1807-1812, 2013.
    • (2013) CIKM , pp. 1807-1812
    • Bian, J.1    Yang, Y.2    Chua, T.-S.3
  • 4
    • 84890768200 scopus 로고    scopus 로고
    • Measuring user influence in twitter: The million follower fallacy
    • M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. Measuring user influence in twitter: The million follower fallacy. ICWSM, 10:10-17, 2010.
    • (2010) ICWSM , vol.10 , pp. 10-17
    • Cha, M.1    Haddadi, H.2    Benevenuto, F.3    Gummadi, P.K.4
  • 5
    • 77956192689 scopus 로고    scopus 로고
    • Scalable influence maximization for prevalent viral marketing in large-scale social networks
    • W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In SIGKDD, pages 1029-1038, 2010.
    • (2010) SIGKDD , pp. 1029-1038
    • Chen, W.1    Wang, C.2    Wang, Y.3
  • 6
    • 70350643635 scopus 로고    scopus 로고
    • Efficient influence maximization in social networks
    • W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In SIGKDD, pages 199-208, 2009.
    • (2009) SIGKDD , pp. 199-208
    • Chen, W.1    Wang, Y.2    Yang, S.3
  • 7
    • 84883069760 scopus 로고    scopus 로고
    • Emerging topic detection for organizations from microblogs
    • Y. Chen, H. Amiri, Z. Li, and T.-S. Chua. Emerging topic detection for organizations from microblogs. In SIGIR, pages 43-52, 2013.
    • (2013) SIGIR , pp. 43-52
    • Chen, Y.1    Amiri, H.2    Li, Z.3    Chua, T.-S.4
  • 8
    • 84866264573 scopus 로고    scopus 로고
    • Next: Nus-tsinghua center for extreme search of user-generated content
    • T.-S. Chua, H. Luan, M. Sun, and S. Yang. Next: Nus-tsinghua center for extreme search of user-generated content. IEEE MultiMedia, 19(3):81-87, 2012.
    • (2012) IEEE MultiMedia , vol.19 , Issue.3 , pp. 81-87
    • Chua, T.-S.1    Luan, H.2    Sun, M.3    Yang, S.4
  • 9
    • 84961329426 scopus 로고    scopus 로고
    • Cascading outbreak prediction in networks: A data-driven approach
    • P. Cui, S. Jin, L. Yu, F. Wang, W. Zhu, and S. Yang. Cascading outbreak prediction in networks: a data-driven approach. In SIGKDD, pages 901-909, 2013.
    • (2013) SIGKDD , pp. 901-909
    • Cui, P.1    Jin, S.2    Yu, L.3    Wang, F.4    Zhu, W.5    Yang, S.6
  • 10
    • 0010087219 scopus 로고    scopus 로고
    • Talk of the network: A complex systems look at the underlying process of word-of-mouth
    • J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing letters, 12(3):211-223, 2001.
    • (2001) Marketing Letters , vol.12 , Issue.3 , pp. 211-223
    • Goldenberg, J.1    Libai, B.2    Muller, E.3
  • 11
    • 77950933438 scopus 로고    scopus 로고
    • Learning influence probabilities in social networks
    • A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities in social networks. In WSDM, pages 241-250, 2010.
    • (2010) WSDM , pp. 241-250
    • Goyal, A.1    Bonchi, F.2    Lakshmanan, L.V.3
  • 12
    • 84858020035 scopus 로고    scopus 로고
    • A data-based approach to social influence maximization
    • A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based approach to social influence maximization. PVLDB, 5(1):73-84, 2011.
    • (2011) PVLDB , vol.5 , Issue.1 , pp. 73-84
    • Goyal, A.1    Bonchi, F.2    Lakshmanan, L.V.3
  • 13
    • 19944399438 scopus 로고    scopus 로고
    • Information diffusion through blogspace
    • D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. In WWW, pages 491-501, 2004.
    • (2004) WWW , pp. 491-501
    • Gruhl, D.1    Guha, R.2    Liben-Nowell, D.3    Tomkins, A.4
  • 14
    • 84887422995 scopus 로고    scopus 로고
    • Information diffusion in online social networks: A survey
    • A. Guille, H. Hacid, C. Favre, and D. A. Zighed. Information diffusion in online social networks: A survey. SIGMOD Record, 42(2):17, 2013.
    • (2013) SIGMOD Record , vol.42 , Issue.2 , pp. 17
    • Guille, A.1    Hacid, H.2    Favre, C.3    Zighed, D.A.4
  • 15
    • 79955141054 scopus 로고    scopus 로고
    • Predicting popular messages in twitter
    • L. Hong, O. Dan, and B. D. Davison. Predicting popular messages in twitter. In WWW, pages 57-58, 2011.
    • (2011) WWW , pp. 57-58
    • Hong, L.1    Dan, O.2    Davison, B.D.3
  • 16
    • 33747172362 scopus 로고    scopus 로고
    • Maximizing the spread of influence through a social network
    • D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In SIGKDD, pages 137-146, 2003.
    • (2003) SIGKDD , pp. 137-146
    • Kempe, D.1    Kleinberg, J.2    Tardos, E.3
  • 17
    • 0035246564 scopus 로고    scopus 로고
    • Factor graphs and the sum-product algorithm
    • F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. TIT, 47(2):498-519, 2001.
    • (2001) TIT , vol.47 , Issue.2 , pp. 498-519
    • Kschischang, F.R.1    Frey, B.J.2    Loeliger, H.-A.3
  • 18
    • 14844347603 scopus 로고    scopus 로고
    • On the bursty evolution of blogspace
    • R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the bursty evolution of blogspace. WWW, 8(2):159-178, 2005.
    • (2005) WWW , vol.8 , Issue.2 , pp. 159-178
    • Kumar, R.1    Novak, J.2    Raghavan, P.3    Tomkins, A.4
  • 19
    • 77954578836 scopus 로고    scopus 로고
    • Randomization tests for distinguishing social influence and homophily effects
    • T. La Fond and J. Neville. Randomization tests for distinguishing social influence and homophily effects. In WWW, pages 601-610, 2010.
    • (2010) WWW , pp. 601-610
    • La Fond, T.1    Neville, J.2
  • 21
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. TNN, 22(2):199-210, 2011.
    • (2011) TNN , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 22
    • 77956224695 scopus 로고    scopus 로고
    • Social action tracking via noise tolerant time-varying factor graphs
    • C. Tan, J. Tang, J. Sun, Q. Lin, and F. Wang. Social action tracking via noise tolerant time-varying factor graphs. In SIGKDD, pages 1049-1058, 2010.
    • (2010) SIGKDD , pp. 1049-1058
    • Tan, C.1    Tang, J.2    Sun, J.3    Lin, Q.4    Wang, F.5
  • 23
    • 84924247519 scopus 로고    scopus 로고
    • Confluence: Conformity influence in large social networks
    • J. Tang, W. Sen, and J. Sun. Confluence: conformity influence in large social networks. In SIGKDD, pages 347-355, 2013.
    • (2013) SIGKDD , pp. 347-355
    • Tang, J.1    Sen, W.2    Sun, J.3
  • 24
    • 70350639694 scopus 로고    scopus 로고
    • Social influence analysis in large-scale networks
    • J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale networks. In SIGKDD, pages 807-816, 2009.
    • (2009) SIGKDD , pp. 807-816
    • Tang, J.1    Sun, J.2    Wang, C.3    Yang, Z.4
  • 25
    • 84879905842 scopus 로고    scopus 로고
    • A feasible method for optimization with orthogonality constraints
    • Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Mathematical Programming, pages 1-38, 2013.
    • (2013) Mathematical Programming , pp. 1-38
    • Wen, Z.1    Yin, W.2
  • 26
    • 77950897279 scopus 로고    scopus 로고
    • Twitterrank: Finding topic-sensitive influential twitterers
    • J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential twitterers. In WSDM, pages 261-270, 2010.
    • (2010) WSDM , pp. 261-270
    • Weng, J.1    Lim, E.-P.2    Jiang, J.3    He, Q.4
  • 27
    • 77954603933 scopus 로고    scopus 로고
    • Modeling relationship strength in online social networks
    • R. Xiang, J. Neville, and M. Rogati. Modeling relationship strength in online social networks. In WWW, pages 981-990, 2010.
    • (2010) WWW , pp. 981-990
    • Xiang, R.1    Neville, J.2    Rogati, M.3
  • 28
    • 80052904929 scopus 로고    scopus 로고
    • Tag localization with spatial correlations and joint group sparsity
    • Y. Yang, Y. Yang, Z. Huang, H. T. Shen, and F. Nie. Tag localization with spatial correlations and joint group sparsity. In CVPR, pages 881-888, 2011.
    • (2011) CVPR , pp. 881-888
    • Yang, Y.1    Yang, Y.2    Huang, Z.3    Shen, H.T.4    Nie, F.5
  • 29
    • 84878475233 scopus 로고    scopus 로고
    • Effective transfer tagging from image to video
    • Y. Yang, Y. Yang, and H. T. Shen. Effective transfer tagging from image to video. TOMCCAP, 9(2):14, 2013.
    • (2013) TOMCCAP , vol.9 , Issue.2 , pp. 14
    • Yang, Y.1    Yang, Y.2    Shen, H.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.