메뉴 건너뛰기




Volumn 2016, Issue 10, 2016, Pages

Performance of joint modelling of time-to-event data with time-dependent predictors: An assessment based on transition to psychosis data

Author keywords

Joint modelling; Simulations; Software packages; Time to event outcome; Transition to psychosis

Indexed keywords

ALGORITHM; ARTICLE; BOOTSTRAPPING; CLINICAL ASSESSMENT TOOL; COX REGRESSION ANALYSIS; DATA ANALYSIS SOFTWARE; JOINT MODELLING; MATHEMATICAL ANALYSIS; PSYCHOSIS; REGRESSION ANALYSIS; SIMULATION;

EID: 84994424484     PISSN: None     EISSN: 21678359     Source Type: Journal    
DOI: 10.7717/peerj.2582     Document Type: Article
Times cited : (26)

References (49)
  • 1
    • 84870465485 scopus 로고
    • Fourth edition. Washington, D.C.: American Psychiatric Association
    • American Psychiatric Association. 1994. Diagnostic and Statistical Manual of Mental Disorders. Fourth edition. Washington, D.C.: American Psychiatric Association
    • (1994) Diagnostic and Statistical Manual of Mental Disorders
  • 2
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • Brown ER, Ibrahim JG. 2003. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59(2):221-228 DOI 10.1111/1541-0420.00028
    • (2003) Biometrics , vol.59 , Issue.2 , pp. 221-228
    • Brown, E.R.1    Ibrahim, J.G.2
  • 4
    • 33745288267 scopus 로고    scopus 로고
    • Joint models for multivariate longitudinal and multivariate survival data
    • Chi Y-Y, Ibrahim JG. 2006. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62(2):432-445 DOI 10.1111/j.1541-0420.2005.00448.x
    • (2006) Biometrics , vol.62 , Issue.2 , pp. 432-445
    • Chi, Y.-Y.1    Ibrahim, J.G.2
  • 6
    • 0016794660 scopus 로고
    • Partial likelihood
    • Cox DR. 1975. Partial likelihood. Biometrika 62(2):269-276 DOI 10.1093/biomet/62.2.269
    • (1975) Biometrika , vol.62 , Issue.2 , pp. 269-276
    • Cox, D.R.1
  • 7
    • 84875649987 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and survival data
    • Crowther MJ, Abrams KR, Lambert PC. 2013. Joint modeling of longitudinal and survival data. Stata Journal 13(1):165-184
    • (2013) Stata Journal , vol.13 , Issue.1 , pp. 165-184
    • Crowther, M.J.1    Abrams, K.R.2    Lambert, P.C.3
  • 9
    • 0029763749 scopus 로고    scopus 로고
    • Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach
    • Faucett CL, Thomas DC. 1996. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Statistics in Medicine 15(15):1663-1685 DOI 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
    • (1996) Statistics in Medicine , vol.15 , Issue.15 , pp. 1663-1685
    • Faucett, C.L.1    Thomas, D.C.2
  • 10
    • 84930151542 scopus 로고    scopus 로고
    • Joint modeling of survival and longitudinal non-survival data: current methods and issues. Report of the DIA Bayesian joint modeling working group
    • Gould AL, Boye ME, Crowther MJ, Ibrahim JG, Quartey G, Micallef S, Bois FY. 2015. Joint modeling of survival and longitudinal non-survival data: current methods and issues. Report of the DIA Bayesian joint modeling working group. Statistics in Medicine 34(14):2181-2195 DOI 10.1002/sim.6141
    • (2015) Statistics in Medicine , vol.34 , Issue.14 , pp. 2181-2195
    • Gould, A.L.1    Boye, M.E.2    Crowther, M.J.3    Ibrahim, J.G.4    Quartey, G.5    Micallef, S.6    Bois, F.Y.7
  • 12
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A. 2000. Joint modelling of longitudinal measurements and event time data. Biostatistics 1(4):465-480 DOI 10.1093/biostatistics/1.4.465
    • (2000) Biostatistics , vol.1 , Issue.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 13
    • 33845482505 scopus 로고    scopus 로고
    • Joint modeling of survival and longitudinal data: likelihood approach revisited
    • Hsieh F, Tseng Y-K, Wang J-L. 2006. Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics 62(4):1037-1043 DOI 10.1111/j.1541-0420.2006.00570.x
    • (2006) Biometrics , vol.62 , Issue.4 , pp. 1037-1043
    • Hsieh, F.1    Tseng, Y.-K.2    Wang, J.-L.3
  • 14
    • 77954944281 scopus 로고    scopus 로고
    • Basic concepts and methods for joint models of longitudinal and survival data
    • Ibrahim JG, Chu H, Chen LM. 2010. Basic concepts and methods for joint models of longitudinal and survival data. Journal of Clinical Oncology 28(16):2796-2801 DOI 10.1200/JCO.2009.25.0654
    • (2010) Journal of Clinical Oncology , vol.28 , Issue.16 , pp. 2796-2801
    • Ibrahim, J.G.1    Chu, H.2    Chen, L.M.3
  • 16
    • 1342322973 scopus 로고    scopus 로고
    • New York: Springer
    • Lange K. 2004. Optimization. New York: Springer, 252
    • (2004) Optimization , pp. 252
    • Lange, K.1
  • 17
    • 84883157185 scopus 로고    scopus 로고
    • Advances in joint modelling: a review of recent developments with application to the survival of end stage renal disease patients
    • McCrink LM, Marshall AH, Cairns KJ. 2013. Advances in joint modelling: a review of recent developments with application to the survival of end stage renal disease patients. International Statistical Review 81(2):249-269 DOI 10.1111/insr.12018
    • (2013) International Statistical Review , vol.81 , Issue.2 , pp. 249-269
    • McCrink, L.M.1    Marshall, A.H.2    Cairns, K.J.3
  • 23
    • 77749317069 scopus 로고
    • Covariate measurement errors and parameter estimation in a failure time regression model
    • Prentice RL. 1982. Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69(2):331-342 DOI 10.1093/biomet/69.2.331
    • (1982) Biometrika , vol.69 , Issue.2 , pp. 331-342
    • Prentice, R.L.1
  • 24
    • 84963641621 scopus 로고    scopus 로고
    • Vienna: R foundation for Statistical Computing
    • R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R foundation for Statistical Computing. Available at http://www. R-project.org/
    • (2014) R: a language and environment for statistical computing
  • 25
    • 10944224477 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and survival data via a common frailty
    • Ratcliffe SJ, Guo W, Ten Have TR. 2004. Joint modeling of longitudinal and survival data via a common frailty. Biometrics 60(4):892-899 DOI 10.1111/j.0006-341X.2004.00244.x
    • (2004) Biometrics , vol.60 , Issue.4 , pp. 892-899
    • Ratcliffe, S.J.1    Guo, W.2    Ten Have, T.R.3
  • 26
    • 77955157844 scopus 로고    scopus 로고
    • JM: an R package for the joint modelling of longitudinal and time-to-event data
    • Rizopoulos D. 2010. JM: an R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35(9):1-33 DOI 10.18637/jss.v035.i09
    • (2010) Journal of Statistical Software , vol.35 , Issue.9 , pp. 1-33
    • Rizopoulos, D.1
  • 27
    • 80455176985 scopus 로고    scopus 로고
    • Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule
    • Rizopoulos D. 2012. Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. Computational Statistics & Data Analysis 56(3):491-501 DOI 10.1016/j.csda.2011.09.007
    • (2012) Computational Statistics & Data Analysis , vol.56 , Issue.3 , pp. 491-501
    • Rizopoulos, D.1
  • 29
    • 84905510040 scopus 로고    scopus 로고
    • Tools & techniques-statistics: dealing with time-varying covariates in survival analysis-joint models versus Cox models
    • Rizopoulos D, Takkenberg JJM. 2014. Tools & techniques-statistics: dealing with time-varying covariates in survival analysis-joint models versus Cox models. EuroIntervention 10(2): 285-288
    • (2014) EuroIntervention , vol.10 , Issue.2 , pp. 285-288
    • Rizopoulos, D.1    Takkenberg, J.J.M.2
  • 31
    • 40249113335 scopus 로고    scopus 로고
    • Shared parameter models under random effects misspecification
    • Rizopoulos D, Verbeke G, Molenberghs G. 2008. Shared parameter models under random effects misspecification. Biometrika 95(1):63-74 DOI 10.1093/biomet/asm087
    • (2008) Biometrika , vol.95 , Issue.1 , pp. 63-74
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3
  • 32
    • 0037102914 scopus 로고    scopus 로고
    • Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects
    • Royston P, Parmar MKB. 2002. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine 21(15):2175-2197 DOI 10.1002/sim.1203
    • (2002) Statistics in Medicine , vol.21 , Issue.15 , pp. 2175-2197
    • Royston, P.1    Parmar, M.K.B.2
  • 34
    • 0442310599 scopus 로고
    • Modeling a marker of disease progression and onset of disease
    • Jewell NP, Dietz K, Farewell VT, eds. Boston: Birkhäusers
    • Self S, Pawitan Y. 1992. Modeling a marker of disease progression and onset of disease. In: Jewell NP, Dietz K, Farewell VT, eds. AIDS Epidemiology: Methodological Issues. Boston: Birkhäuser
    • (1992) AIDS Epidemiology: Methodological Issues
    • Self, S.1    Pawitan, Y.2
  • 35
    • 2342525727 scopus 로고    scopus 로고
    • An estimator for the proportional hazards model with multiple longitudinal covariates measured with error
    • Song XA, Davidian M, Tsiatis AA. 2002. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3(4):511-528 DOI 10.1093/biostatistics/3.4.511
    • (2002) Biostatistics , vol.3 , Issue.4 , pp. 511-528
    • Song, X.A.1    Davidian, M.2    Tsiatis, A.A.3
  • 36
    • 80052418167 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture
    • Sweeting MJ, Thompson SG. 2011. Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biometrical Journal 53(5):750-763 DOI 10.1002/bimj.201100052
    • (2011) Biometrical Journal , vol.53 , Issue.5 , pp. 750-763
    • Sweeting, M.J.1    Thompson, S.G.2
  • 37
    • 84921487298 scopus 로고    scopus 로고
    • Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data
    • Tang A-M, Tang N-S. 2015. Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data. Statistics in Medicine 34(5):824-843 DOI 10.1002/sim.6373
    • (2015) Statistics in Medicine , vol.34 , Issue.5 , pp. 824-843
    • Tang, A.-M.1    Tang, N.-S.2
  • 38
    • 84901922514 scopus 로고    scopus 로고
    • Semiparametric Bayesian joint models of multivariate longitudinal and survival data
    • Tang N-S, Tang A-M, Pan D-D. 2014. Semiparametric Bayesian joint models of multivariate longitudinal and survival data. Computational Statistics & Data Analysis 77:113-129 DOI 10.1016/j.csda.2014.02.015
    • (2014) Computational Statistics & Data Analysis , vol.77 , pp. 113-129
    • Tang, N.-S.1    Tang, A.-M.2    Pan, D.-D.3
  • 40
    • 0001659147 scopus 로고    scopus 로고
    • A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error
    • Tsiatis AA, Davidian M. 2001. A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88(2):447-458 DOI 10.1093/biomet/88.2.447
    • (2001) Biometrika , vol.88 , Issue.2 , pp. 447-458
    • Tsiatis, A.A.1    Davidian, M.2
  • 41
    • 21844506206 scopus 로고
    • Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS
    • Tsiatis AA, Degruttola V, Wulfsohn MS. 1995. Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 90(429):27-37 DOI 10.1080/01621459.1995.10476485
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.429 , pp. 27-37
    • Tsiatis, A.A.1    Degruttola, V.2    Wulfsohn, M.S.3
  • 43
    • 84863350776 scopus 로고    scopus 로고
    • Analysis of longitudinal and survival data: joint modeling, inferencemethods, and issues
    • Wu L, Liu W, Yi GY, Huang Y. 2012. Analysis of longitudinal and survival data: joint modeling, inferencemethods, and issues. Journal of Probability and Statistics 2012:17 DOI 10.1155/2012/640153
    • (2012) Journal of Probability and Statistics , vol.2012 , pp. 17
    • Wu, L.1    Liu, W.2    Yi, G.Y.3    Huang, Y.4
  • 44
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn MS, Tsiatis AA. 1997. A joint model for survival and longitudinal data measured with error. Biometrics 53(1):330-339 DOI 10.2307/2533118
    • (1997) Biometrics , vol.53 , Issue.1 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 45
    • 0035650134 scopus 로고    scopus 로고
    • Joint analysis of longitudinal data comprising repeated measures and times to events
    • Xu J, Zeger SL. 2001. Joint analysis of longitudinal data comprising repeated measures and times to events. Journal of the Royal Statistical Society: Series C (Applied Statistics) 50(3):375-387 DOI 10.1111/1467-9876.00241
    • (2001) Journal of the Royal Statistical Society: Series C (Applied Statistics) , vol.50 , Issue.3 , pp. 375-387
    • Xu, J.1    Zeger, S.L.2
  • 46
    • 56049124129 scopus 로고    scopus 로고
    • Semiparametric modeling of longitudinal measurements and time-to-event data-a two-stage regression calibration approach
    • Ye W, Lin X, Taylor JMG. 2008. Semiparametric modeling of longitudinal measurements and time-to-event data-a two-stage regression calibration approach. Biometrics 64(4):1238-1246 DOI 10.1111/j.1541-0420.2007.00983.x
    • (2008) Biometrics , vol.64 , Issue.4 , pp. 1238-1246
    • Ye, W.1    Lin, X.2    Taylor, J.M.G.3
  • 49
    • 1342343074 scopus 로고    scopus 로고
    • Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features
    • Yung AR, Phillips LJ, Yuen HP, McGorry PD. 2004. Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features. Schizophrenia Research 67(2-3):131-142 DOI 10.1016/S0920-9964(03)00192-0
    • (2004) Schizophrenia Research , vol.67 , Issue.2-3 , pp. 131-142
    • Yung, A.R.1    Phillips, L.J.2    Yuen, H.P.3    McGorry, P.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.