메뉴 건너뛰기




Volumn , Issue , 2016, Pages 503-508

Deep learning vector quantization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; IMAGE RECOGNITION; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 84994149407     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (11)
  • 8
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • Barbara Hammer, Marc Strickert, and Thomas Villmann. Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 9
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21(12):3532-3561, 2009.
    • (2009) Neural Computation , vol.21 , Issue.12 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 10
    • 84855962168 scopus 로고    scopus 로고
    • Limited rank matrix learning, discriminative dimension reduction and visualization
    • Kerstin Bunte, Petra Schneider, Barbara Hammer, Frank-Michael Schleif, Thomas Villmann, and Michael Biehl. Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Networks, 26:159-173, 2012.
    • (2012) Neural Networks , vol.26 , pp. 159-173
    • Bunte, K.1    Schneider, P.2    Hammer, B.3    Schleif, F.4    Villmann, T.5    Biehl, M.6
  • 11
    • 84994083010 scopus 로고    scopus 로고
    • Stationarity and uniqueness of generalized matrix learning vector quantization
    • Harm de Vries. Stationarity and uniqueness of generalized matrix learning vector quantization. MIWOCI Workshop-2013, page 16, 2013.
    • (2013) MIWOCI Workshop-2013 , pp. 16
    • De Vries, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.