메뉴 건너뛰기




Volumn , Issue , 2016, Pages 664-669

A joint model of orthography and morphological segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; INFERENCE ENGINES;

EID: 84994144909     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/n16-1080     Document Type: Conference Paper
Times cited : (55)

References (35)
  • 1
    • 44949111275 scopus 로고    scopus 로고
    • On the use of morphological analysis for dialectal Arabic speech recognition
    • Mohamed Afify, Ruhi Sarikaya, Hong-Kwang Jeff Kuo, Laurent Besacier, and Yuqing Gao. 2006. On the use of morphological analysis for dialectal Arabic speech recognition. In INTERSPEECH.
    • (2006) Interspeech
    • Afify, M.1    Sarikaya, R.2    Kuo, H.-K.J.3    Besacier, L.4    Gao, Y.5
  • 3
    • 0142161369 scopus 로고    scopus 로고
    • Quick training of probabilistic neural nets by importance sampling
    • Yoshua Bengio, Jean-Sébastien Senécal, et al. 2003. Quick training of probabilistic neural nets by importance sampling. In AISTATS.
    • (2003) AISTATS.
    • Bengio, Y.1    Senécal, J.-S.2
  • 4
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Springer
    • Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pages 177-186. Springer.
    • (2010) Proceedings of COMPSTAT'2010 , pp. 177-186
    • Bottou, L.1
  • 5
    • 84859033288 scopus 로고    scopus 로고
    • Combining morpheme-based machine translation with post-processing morpheme prediction
    • Ann Clifton and Anoop Sarkar. 2011. Combining morpheme-based machine translation with post-processing morpheme prediction. In ACL.
    • (2011) ACL
    • Clifton, A.1    Sarkar, A.2
  • 6
    • 84906923502 scopus 로고    scopus 로고
    • Stochastic contextual edit distance and probabilistic FSTs
    • Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014. Stochastic contextual edit distance and probabilistic FSTs. In ACL.
    • (2014) ACL
    • Cotterell, R.1    Peng, N.2    Eisner, J.3
  • 7
    • 85017320343 scopus 로고    scopus 로고
    • Labeled morphological segmentation with semi-Markov models
    • Ryan Cotterell, Thomas Müller, Alexander Fraser, and Hinrich Schütze. 2015a. Labeled morphological segmentation with semi-Markov models. In CoNLL.
    • (2015) CoNLL
    • Cotterell, R.1    Müller, T.2    Fraser, A.3    Schütze, H.4
  • 8
    • 84959931508 scopus 로고    scopus 로고
    • Modeling word forms using latent underlying morphs and phonology
    • Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2015b. Modeling word forms using latent underlying morphs and phonology. TACL, 3:433-447.
    • (2015) TACL , vol.3 , pp. 433-447
    • Cotterell, R.1    Peng, N.2    Eisner, J.3
  • 11
    • 35548936711 scopus 로고    scopus 로고
    • High-performance, language-independent morphological segmentation
    • Sajib Dasgupta and Vincent Ng. 2007. High-performance, language-independent morphological segmentation. In NAACL.
    • (2007) NAACL
    • Dasgupta, S.1    Ng, V.2
  • 12
    • 80053393416 scopus 로고    scopus 로고
    • Graphical models over multiple strings
    • Markus Dreyer and Jason Eisner. 2009. Graphical models over multiple strings. In EMNLP.
    • (2009) EMNLP
    • Dreyer, M.1    Eisner, J.2
  • 13
    • 70450158501 scopus 로고    scopus 로고
    • Latent-variable modeling of string transductions with finite-state methods
    • Markus Dreyer, Jason R Smith, and Jason Eisner. 2008. Latent-variable modeling of string transductions with finite-state methods. In EMNLP.
    • (2008) EMNLP
    • Dreyer, M.1    Smith, J.R.2    Eisner, J.3
  • 14
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 15
    • 0041079008 scopus 로고    scopus 로고
    • Unsupervised learning of the morphology of a natural language
    • John Goldsmith. 2001. Unsupervised learning of the morphology of a natural language. Computational linguistics, 27(2):153-198.
    • (2001) Computational Linguistics , vol.27 , Issue.2 , pp. 153-198
    • Goldsmith, J.1
  • 16
    • 67349278780 scopus 로고    scopus 로고
    • A Bayesian framework for word segmentation: Exploring the effects of context
    • Sharon Goldwater, Thomas L Griffiths, and Mark Johnson. 2009. A Bayesian framework for word segmentation: Exploring the effects of context. Cognition, 112(1):21-54.
    • (2009) Cognition , vol.112 , Issue.1 , pp. 21-54
    • Goldwater, S.1    Griffiths, T.L.2    Johnson, M.3
  • 20
    • 80053279408 scopus 로고    scopus 로고
    • Morpho Challenge competition 2005-2010: Evaluations and results
    • Mikko Kurimo, Sami Virpioja, Ville Turunen, and Krista Lagus. 2010. Morpho Challenge competition 2005-2010: evaluations and results. In SIGMORPHON.
    • (2010) Sigmorphon
    • Kurimo, M.1    Virpioja, S.2    Turunen, V.3    Lagus, K.4
  • 23
    • 0348198473 scopus 로고    scopus 로고
    • Finite-state transducers in language and speech processing
    • Mehryar Mohri. 1997. Finite-state transducers in language and speech processing. Computational linguistics, 23(2):269-311.
    • (1997) Computational Linguistics , vol.23 , Issue.2 , pp. 269-311
    • Mohri, M.1
  • 24
    • 78751699019 scopus 로고    scopus 로고
    • Improving morphology induction by learning spelling rules
    • Jason Naradowsky and Sharon Goldwater. 2009. Improving morphology induction by learning spelling rules. In IJCAI.
    • (2009) IJCAI
    • Naradowsky, J.1    Goldwater, S.2
  • 26
    • 84858427034 scopus 로고    scopus 로고
    • Unsupervised morphological segmentation with log-linear models
    • Association for Computational Linguistics
    • Hoifung Poon, Colin Cherry, and Kristina Toutanova. 2009. Unsupervised morphological segmentation with log-linear models. In NAACL. Association for Computational Linguistics.
    • (2009) NAACL
    • Poon, H.1    Cherry, C.2    Toutanova, K.3
  • 29
    • 85072755546 scopus 로고    scopus 로고
    • Supervised morphological segmentation in a low-resource learning setting using conditional random fields
    • Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and Mikko Kurimo. 2013. Supervised morphological segmentation in a low-resource learning setting using conditional random fields. In CoNLL.
    • (2013) CoNLL
    • Ruokolainen, T.1    Kohonen, O.2    Virpioja, S.3    Kurimo, M.4
  • 30
    • 85122039144 scopus 로고    scopus 로고
    • Painless semi-supervised morphological segmentation using conditional random fields
    • Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and Mikko Kurimo. 2014. Painless semi-supervised morphological segmentation using conditional random fields. In EACL.
    • (2014) EACL
    • Ruokolainen, T.1    Kohonen, O.2    Virpioja, S.3    Kurimo, M.4
  • 31
    • 34047192804 scopus 로고    scopus 로고
    • Semi-Markov conditional random fields for information extraction
    • Sunita Sarawagi and William W Cohen. 2004. Semi-Markov conditional random fields for information extraction. In NIPS.
    • (2004) NIPS
    • Sarawagi, S.1    Cohen, W.W.2
  • 32
    • 85021628966 scopus 로고    scopus 로고
    • A graph-based lattice dependency parser for joint morphological segmentation and syntactic analysis
    • Wolfgang Seeker and Özlem Çetinoǧlu. 2015. A graph-based lattice dependency parser for joint morphological segmentation and syntactic analysis. TACL.
    • (2015) TACL
    • Seeker, W.1    Çetinoǧlu, Ö.2
  • 33
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • Noah A. Smith and Jason Eisner. 2005. Contrastive estimation: Training log-linear models on unlabeled data. In ACL.
    • (2005) ACL
    • Smith, N.A.1    Eisner, J.2
  • 34
    • 0043272902 scopus 로고    scopus 로고
    • Memory-based morphological analysis
    • Antal van den Bosch and Walter Daelemans. 1999. Memory-based morphological analysis. In ACL.
    • (1999) ACL
    • Van Den Bosch, A.1    Daelemans, W.2
  • 35
    • 84907341251 scopus 로고    scopus 로고
    • DErivBase: Inducing and evaluating a derivational morphology resource for german
    • Britta D Zeller, Jan Snajder, and Sebastian Padó. 2013. DErivBase: Inducing and evaluating a derivational morphology resource for german. In ACL.
    • (2013) ACL
    • Zeller, B.D.1    Snajder, J.2    Padó, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.