-
1
-
-
84919662646
-
Technology roadmap solar photovoltaic energy
-
IEA/OECD, Tech. Rep. available online
-
[1] IEA, Technology roadmap solar photovoltaic energy. IEA/OECD, Tech. Rep., 2014 available online https://www.iea.org/publications/freepublications/publication/pv_roadmap.pdf.
-
(2014)
-
-
IEA1
-
2
-
-
84928781930
-
Quantifying a realistic, worldwide wind and solar electricity supply
-
[2] Deng, Y.Y., Haigh, M., Pouwels, W., Ramaekers, L., Brandsma, R., Schimschar, S., et al. Quantifying a realistic, worldwide wind and solar electricity supply. Glob Environ Change, 239, 2015, 252.
-
(2015)
Glob Environ Change
, vol.239
, pp. 252
-
-
Deng, Y.Y.1
Haigh, M.2
Pouwels, W.3
Ramaekers, L.4
Brandsma, R.5
Schimschar, S.6
-
3
-
-
84959484645
-
Technology roadmap hydrogen and fuel cells
-
IEA/OECD, Tech. Rep. available online
-
[3] IEA, Technology roadmap hydrogen and fuel cells. IEA/OECD, Tech. Rep. 2014 available online http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapHydrogenandFuelCells.pdf.
-
(2014)
-
-
IEA1
-
4
-
-
84890857215
-
Development of hybrid photovoltaic-fuel cell system for stand-alone application
-
[4] Rekioua, D., Bensmail, S., Bettar, N., Development of hybrid photovoltaic-fuel cell system for stand-alone application. Int J Hydrogen Energy, 39, 2014, 1604.
-
(2014)
Int J Hydrogen Energy
, vol.39
, pp. 1604
-
-
Rekioua, D.1
Bensmail, S.2
Bettar, N.3
-
5
-
-
35348875044
-
Photolysis-decomposition of water at the surface of an irradiated semiconductor
-
[5] Fujishima, A., Honda, K., Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature, 238, 1972, 37.
-
(1972)
Nature
, vol.238
, pp. 37
-
-
Fujishima, A.1
Honda, K.2
-
6
-
-
84902983122
-
Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again
-
[6] Jacobsson, T.J., Fjallstrom, V., Edoff, M., Edvinsson, T., Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ Sci, 7, 2014, 2056.
-
(2014)
Energy Environ Sci
, vol.7
, pp. 2056
-
-
Jacobsson, T.J.1
Fjallstrom, V.2
Edoff, M.3
Edvinsson, T.4
-
7
-
-
84875244097
-
Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits
-
[7] Winkler, M.T., Cox, C.R., Nocera, D.G., Buonassisi, T., Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits. Proc Nat Acad Sci, 110, 2013, E1076.
-
(2013)
Proc Nat Acad Sci
, vol.110
, pp. E1076
-
-
Winkler, M.T.1
Cox, C.R.2
Nocera, D.G.3
Buonassisi, T.4
-
8
-
-
0003592046
-
Solar cells: operating principles, technology, and system applications
-
Prentice-Hall Inc. Englewood Cliffs NJ
-
[8] Green, M.A., Solar cells: operating principles, technology, and system applications. 1982, Prentice-Hall Inc., Englewood Cliffs NJ.
-
(1982)
-
-
Green, M.A.1
-
9
-
-
84870719825
-
Past achievements and future challenges in the development of optically transparent electrodes
-
[9] Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics, 6, 2012, 809.
-
(2012)
Nat Photonics
, vol.6
, pp. 809
-
-
Ellmer, K.1
-
10
-
-
84870900511
-
Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
-
[10] Haussener, S., Xiang, C., Spurgeon, J.M., Ardo, S., Lewis, N.S., Weber, A.Z., Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ Sci, 5, 2012, 9922.
-
(2012)
Energy Environ Sci
, vol.5
, pp. 9922
-
-
Haussener, S.1
Xiang, C.2
Spurgeon, J.M.3
Ardo, S.4
Lewis, N.S.5
Weber, A.Z.6
-
11
-
-
84907991635
-
Modeling the performance of an integrated photoelectrolysis system with 10 × solar concentrators
-
[11] Chen, Y., Xiang, C., Hu, S., Lewis, N.S., Modeling the performance of an integrated photoelectrolysis system with 10 × solar concentrators. J Electrochem Soc, 161, 2014, F1101.
-
(2014)
J Electrochem Soc
, vol.161
, pp. F1101
-
-
Chen, Y.1
Xiang, C.2
Hu, S.3
Lewis, N.S.4
-
12
-
-
84938818763
-
An integrated device view on photo-electrochemical solar-hydrogen generation
-
[12] Modestino, M.A., Haussener, S., An integrated device view on photo-electrochemical solar-hydrogen generation. Ann Rev Chem Biomol Engin, 6, 2015, 13.
-
(2015)
Ann Rev Chem Biomol Engin
, vol.6
, pp. 13
-
-
Modestino, M.A.1
Haussener, S.2
-
13
-
-
84941690718
-
Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
-
[13] Ager, J.W., Shaner, M.R., Walczak, K.A., Sharp, I.D., Ardo, S., Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci, 8, 2015, 2811.
-
(2015)
Energy Environ Sci
, vol.8
, pp. 2811
-
-
Ager, J.W.1
Shaner, M.R.2
Walczak, K.A.3
Sharp, I.D.4
Ardo, S.5
-
14
-
-
84883669048
-
An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
-
[14] Hu, S., Xiang, C., Haussener, S., Berger, A.D., Lewis, N.S., An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci, 6, 2013, 2984.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 2984
-
-
Hu, S.1
Xiang, C.2
Haussener, S.3
Berger, A.D.4
Lewis, N.S.5
-
15
-
-
84887858384
-
Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
-
[15] Haussener, S., Hu, S., Xiang, C., Weber, A.Z., Lewis, N.S., Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ Sci, 6, 2013, 3605.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 3605
-
-
Haussener, S.1
Hu, S.2
Xiang, C.3
Weber, A.Z.4
Lewis, N.S.5
-
16
-
-
84883008345
-
Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
-
[16] Pinaud, B.A., Benck, J.D., Seitz, L.C., Forman, A.J., Chen, Z., Deutsch, T.G., et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci, 6, 2013, 1983.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 1983
-
-
Pinaud, B.A.1
Benck, J.D.2
Seitz, L.C.3
Forman, A.J.4
Chen, Z.5
Deutsch, T.G.6
-
17
-
-
0032540476
-
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
-
[17] Khaselev, O., Turner, J.A., A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science, 280, 1998, 425.
-
(1998)
Science
, vol.280
, pp. 425
-
-
Khaselev, O.1
Turner, J.A.2
-
18
-
-
84941618794
-
Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure
-
[18] May, M.M., Lewerenz, H.-J., Lackner, D., Dimroth, F., Hannappel, T., Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Comm, 6, 2015, 8286.
-
(2015)
Nat Comm
, vol.6
, pp. 8286
-
-
May, M.M.1
Lewerenz, H.-J.2
Lackner, D.3
Dimroth, F.4
Hannappel, T.5
-
19
-
-
80555150640
-
Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
-
[19] Reece, S.Y., Hamel, J.A., Sung, K., Jarvi, T.D., Esswein, A.J., Pijpers, J.J.H., et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 334, 2011, 645.
-
(2011)
Science
, vol.334
, pp. 645
-
-
Reece, S.Y.1
Hamel, J.A.2
Sung, K.3
Jarvi, T.D.4
Esswein, A.J.5
Pijpers, J.J.H.6
-
20
-
-
33747159546
-
Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting
-
[20] Kelly, N.A., Gibson, T.L., Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int J Hydrogen Energy, 31, 2006, 1658.
-
(2006)
Int J Hydrogen Energy
, vol.31
, pp. 1658
-
-
Kelly, N.A.1
Gibson, T.L.2
-
21
-
-
84922897090
-
Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system
-
[21] Walczak, K., Chen, Y., Karp, C., Beeman, J.W., Shaner, M., Spurgeon, J., et al. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. ChemSusChem, 8, 2015, 544.
-
(2015)
ChemSusChem
, vol.8
, pp. 544
-
-
Walczak, K.1
Chen, Y.2
Karp, C.3
Beeman, J.W.4
Shaner, M.5
Spurgeon, J.6
-
22
-
-
84881162564
-
Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
-
[22] Abdi, F.F., Han, L., Smets, A.H., Zeman, M., Dam, B., van de Krol, R., Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Comm, 4, 2013, 2195.
-
(2013)
Nat Comm
, vol.4
, pp. 2195
-
-
Abdi, F.F.1
Han, L.2
Smets, A.H.3
Zeman, M.4
Dam, B.5
van de Krol, R.6
-
23
-
-
84921522623
-
Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells
-
[23] Han, L., Abdi, F.F., van de Krol, R., Liu, R., Huang, Z., Lewerenz, H.-J., et al. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. ChemSusChem, 7, 2014, 2832.
-
(2014)
ChemSusChem
, vol.7
, pp. 2832
-
-
Han, L.1
Abdi, F.F.2
van de Krol, R.3
Liu, R.4
Huang, Z.5
Lewerenz, H.-J.6
-
24
-
-
84959020220
-
Optimized immobilization of ZnO: Co electrocatalysts realizes 5% efficiency in photo-assisted splitting of water
-
[24] Azarpira, A., Pfrommer, J., Olech, K., Hohn, C., Driess, M., Stannowski, B., et al. Optimized immobilization of ZnO: Co electrocatalysts realizes 5% efficiency in photo-assisted splitting of water. J Mater Chem A, 4, 2016, 3082.
-
(2016)
J Mater Chem A
, vol.4
, pp. 3082
-
-
Azarpira, A.1
Pfrommer, J.2
Olech, K.3
Hohn, C.4
Driess, M.5
Stannowski, B.6
-
25
-
-
33845281632
-
Bipolar Cadmium Selenide/Cobalt(ii) Sulfide semiconductor photoelectrode arrays for unassisted photolytic water splitting
-
[25] Smotkin, E.S., Cervera-March, S., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T., et al. Bipolar Cadmium Selenide/Cobalt(ii) Sulfide semiconductor photoelectrode arrays for unassisted photolytic water splitting. J Phys Chem, 91, 1987, 6.
-
(1987)
J Phys Chem
, vol.91
, pp. 6
-
-
Smotkin, E.S.1
Cervera-March, S.2
Bard, A.J.3
Campion, A.4
Fox, M.A.5
Mallouk, T.6
-
26
-
-
0035398718
-
Over 18 solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting
-
[26] Licht, S., Wang, B., Mukerji, S., Soga, T., Umeno, M., Tributsch, H., Over 18 solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. Int J Hydrogen Energy, 26, 2001, 653.
-
(2001)
Int J Hydrogen Energy
, vol.26
, pp. 653
-
-
Licht, S.1
Wang, B.2
Mukerji, S.3
Soga, T.4
Umeno, M.5
Tributsch, H.6
-
27
-
-
84886721800
-
Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell
-
[27] Fujii, K., Nakamura, S., Sugiyama, M., Watanabe, K., Bagheri, B., Nakano, Y., Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int J Hydrogen Energy, 38, 2013, 14424.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 14424
-
-
Fujii, K.1
Nakamura, S.2
Sugiyama, M.3
Watanabe, K.4
Bagheri, B.5
Nakano, Y.6
-
28
-
-
84953399941
-
Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting
-
[28] Urbain, F., Smirnov, V., Becker, J.-P., Lambertz, A., Yang, F., Ziegler, J., et al. Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting. Energy Environ Sci, 9, 2016, 145.
-
(2016)
Energy Environ Sci
, vol.9
, pp. 145
-
-
Urbain, F.1
Smirnov, V.2
Becker, J.-P.3
Lambertz, A.4
Yang, F.5
Ziegler, J.6
-
29
-
-
84992469263
-
Artificial leaf for solar water splitting based on a triple–junction a-Si-μc-Si thin film solar cell and a pedot:pss/catalyst blend
-
[29] Bogdanoff, P., Stellmach, D., Gabriel, O., Stannowski, B., Schlatmann, R., van de Krol, R., et al. Artificial leaf for solar water splitting based on a triple–junction a-Si-μc-Si thin film solar cell and a pedot:pss/catalyst blend. Energy Tech, 4, 2016, 230.
-
(2016)
Energy Tech
, vol.4
, pp. 230
-
-
Bogdanoff, P.1
Stellmach, D.2
Gabriel, O.3
Stannowski, B.4
Schlatmann, R.5
van de Krol, R.6
-
30
-
-
84876900680
-
Integrated microfluidic test-bed for energy conversion devices
-
[30] Modestino, M.A., Diaz-Botia, C.A., Haussener, S., Gomez-Sjoberg, R., Ager, J.W., Segalman, R.A., Integrated microfluidic test-bed for energy conversion devices. Phys Chem Chem Phys, 15, 2013, 7050.
-
(2013)
Phys Chem Chem Phys
, vol.15
, pp. 7050
-
-
Modestino, M.A.1
Diaz-Botia, C.A.2
Haussener, S.3
Gomez-Sjoberg, R.4
Ager, J.W.5
Segalman, R.A.6
-
31
-
-
84855225262
-
Multijunction approaches to photoelectrochemical water splitting
-
R. van de Krol M. Grätzel Springer Heidelberg
-
[31] Miller, E.L., DeAngeils, A., Mallory, S., Multijunction approaches to photoelectrochemical water splitting. van de Krol, R., Grätzel, M., (eds.) Photoelectrochemical hydrogen production, 2012, Springer, Heidelberg, 205–276.
-
(2012)
Photoelectrochemical hydrogen production
, pp. 205-276
-
-
Miller, E.L.1
DeAngeils, A.2
Mallory, S.3
-
32
-
-
84907588597
-
Ten-percent solar-to-fuel conversion with nonprecious materials
-
[32] Cox, C.R., Lee, J.Z., Nocera, D.G., Buonassisi, T., Ten-percent solar-to-fuel conversion with nonprecious materials. Proc Nat Acad Sci, 111, 2014, 14057.
-
(2014)
Proc Nat Acad Sci
, vol.111
, pp. 14057
-
-
Cox, C.R.1
Lee, J.Z.2
Nocera, D.G.3
Buonassisi, T.4
-
33
-
-
84887986430
-
A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency;
-
[33] Jacobsson, T.J., Fjallstrom, V., Sahlberg, M., Edoff, M., Edvinsson, T., A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency;. Energy Environ Sci, 6, 2013, 3676.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 3676
-
-
Jacobsson, T.J.1
Fjallstrom, V.2
Sahlberg, M.3
Edoff, M.4
Edvinsson, T.5
-
34
-
-
84907428372
-
Water photolysis at 12.3 efficiency via perovskite photovoltaics and earth-abundant catalysts
-
[34] Luo, J., Im, J.-H., Mayer, M.T., Schreier, M., Nazeeruddin, M.K., Park, N.-G., et al. Water photolysis at 12.3 efficiency via perovskite photovoltaics and earth-abundant catalysts. Science, 345, 2014, 1593.
-
(2014)
Science
, vol.345
, pp. 1593
-
-
Luo, J.1
Im, J.-H.2
Mayer, M.T.3
Schreier, M.4
Nazeeruddin, M.K.5
Park, N.-G.6
-
35
-
-
84941624169
-
Cu(In,Ga)Se2 superstrate solar cells: prospects and limitations
-
[35] Heinemann, M.D., Efimova, V., Klenk, R., Hoepfner, B., Wollgarten, M., Unold, T., et al. Cu(In,Ga)Se2 superstrate solar cells: prospects and limitations. Prog Photov Res Appl, 23, 2014, 1228.
-
(2014)
Prog Photov Res Appl
, vol.23
, pp. 1228
-
-
Heinemann, M.D.1
Efimova, V.2
Klenk, R.3
Hoepfner, B.4
Wollgarten, M.5
Unold, T.6
-
36
-
-
55049101346
-
Optimization of solar powered hydrogen production using photovoltaic electrolysis devices
-
[36] Gibson, T.L., Kelly, N.A., Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy, 33, 2008, 5931.
-
(2008)
Int J Hydrogen Energy
, vol.33
, pp. 5931
-
-
Gibson, T.L.1
Kelly, N.A.2
-
37
-
-
84958915569
-
Influence of the operating temperature on the performance of silicon based photoelectrochemical devices for water splitting
-
[37] Urbain, F., Becker, J.P., Smirnov, V., Ziegler, J., Yang, F., Kaiser, B., et al. Influence of the operating temperature on the performance of silicon based photoelectrochemical devices for water splitting. Mater Sci Semicond Proc, 42, 2016, 142.
-
(2016)
Mater Sci Semicond Proc
, vol.42
, pp. 142
-
-
Urbain, F.1
Becker, J.P.2
Smirnov, V.3
Ziegler, J.4
Yang, F.5
Kaiser, B.6
-
39
-
-
85018349879
-
Status on technologies for hydrogen production by water electrolysis
-
Wiley-VCH Verlag GmbH & Co. KGaA Available online
-
[39] Mergel, J., Carmo, M., Fritz, D., Status on technologies for hydrogen production by water electrolysis. 2013, Wiley-VCH Verlag GmbH & Co. KGaA, 423–450 Available online http://dx.doi.org/10.1002/9783527673872.ch22.
-
(2013)
, pp. 423-450
-
-
Mergel, J.1
Carmo, M.2
Fritz, D.3
-
40
-
-
79956024940
-
Current state-of-the-art hydrogen production cost estimate using water electrolysis
-
NREL Tech. Rep., 2009, Available online
-
[40] Genovese, J., Harg, K., Paster, M., Turner, J., Current state-of-the-art hydrogen production cost estimate using water electrolysis., 2009, NREL Tech. Rep., 2009, Available online http://www.hydrogen.energy.gov/pdfs/46676.pdf.
-
(2009)
-
-
Genovese, J.1
Harg, K.2
Paster, M.3
Turner, J.4
-
41
-
-
84873717112
-
Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien
-
NOW, Tech. Rep. Available online
-
[41] Smolinka, T., Günther, M., Garche, J., Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien. NOW, Tech. Rep., 2011 Available online http://de.scribd.com/doc/74681539/Technologie-Der-Wasserelektrolyse-Abschlussbericht-Frauenhofer-ISE#scribd.
-
(2011)
-
-
Smolinka, T.1
Günther, M.2
Garche, J.3
-
42
-
-
84910134467
-
Design and cost considerations for practical solar-hydrogen generators
-
[42] Rodriguez, C.A., Modestino, M.A., Psaltis, D., Moser, C., Design and cost considerations for practical solar-hydrogen generators. Energy Environ Sci, 7, 2014, 3828.
-
(2014)
Energy Environ Sci
, vol.7
, pp. 3828
-
-
Rodriguez, C.A.1
Modestino, M.A.2
Psaltis, D.3
Moser, C.4
-
43
-
-
84944174379
-
Learning curve analysis of concentrated photovoltaic systems
-
[43] Haysom, J.E., Jafarieh, O., Anis, H., Hinzer, K., Wright, D., Learning curve analysis of concentrated photovoltaic systems. Prog Photov Res Appl, 23, 2015, 1678.
-
(2015)
Prog Photov Res Appl
, vol.23
, pp. 1678
-
-
Haysom, J.E.1
Jafarieh, O.2
Anis, H.3
Hinzer, K.4
Wright, D.5
-
44
-
-
84921282824
-
Study on development of water electrolysis in the EU
-
Tech. Rep. E4tech and Element Energy Available online
-
[44] Bertuccioli, L., Chan, A., Hart, D., Lehner, F., Madden, B., Standen, E., Study on development of water electrolysis in the EU. Tech. Rep., 2014, E4tech and Element Energy Available online http://www.fch.europa.eu/sites/default/files/study%20electrolyser_0-Logos_0_0.pdf.
-
(2014)
-
-
Bertuccioli, L.1
Chan, A.2
Hart, D.3
Lehner, F.4
Madden, B.5
Standen, E.6
-
45
-
-
84994160729
-
From leaf to tree: upscaling of artificial photosynthesis
-
Available online
-
[45] Turan, B., Becker, J.P., Urbain, F., Finger, F., Rau, U., Haas, S., From leaf to tree: upscaling of artificial photosynthesis. Mater Sci, 2016 Available online http://arxiv.org/abs/1604.03074.
-
(2016)
Mater Sci
-
-
Turan, B.1
Becker, J.P.2
Urbain, F.3
Finger, F.4
Rau, U.5
Haas, S.6
-
46
-
-
84938510620
-
Quadruple-junction solar cells and modules based on amorphous and microcrystalline silicon with high stable efficiencies
-
[46] Kirner, S., Neubert, S., Schultz, C., Gabriel, O., Stannowski, B., Rech, B., et al. Quadruple-junction solar cells and modules based on amorphous and microcrystalline silicon with high stable efficiencies. Jap J Appl Phys, 54, 2015, 08KB03.
-
(2015)
Jap J Appl Phys
, vol.54
, pp. 08KB03
-
-
Kirner, S.1
Neubert, S.2
Schultz, C.3
Gabriel, O.4
Stannowski, B.5
Rech, B.6
-
47
-
-
84901606058
-
Amorphous TiO2 coatings stabilize Si, GaAs, and gap photoanodes for efficient water oxidation
-
[47] Hu, S., Shaner, M.R., Beardslee, J.A., Lichterman, M., Brunschwig, B.S., Lewis, N.S., Amorphous TiO2 coatings stabilize Si, GaAs, and gap photoanodes for efficient water oxidation. Science, 344, 2014, 1005.
-
(2014)
Science
, vol.344
, pp. 1005
-
-
Hu, S.1
Shaner, M.R.2
Beardslee, J.A.3
Lichterman, M.4
Brunschwig, B.S.5
Lewis, N.S.6
|