메뉴 건너뛰기




Volumn , Issue , 2016, Pages 199-209

Recurrent neural network grammars

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; MODELING LANGUAGES; SYNTACTICS;

EID: 84994082483     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/n16-1024     Document Type: Conference Paper
Times cited : (590)

References (56)
  • 1
    • 85077326659 scopus 로고    scopus 로고
    • Relating probabilistic grammars and automata
    • Steven Abney, David McAllester, and Fernando Pereira. 1999. Relating probabilistic grammars and automata. In Proc. ACL.
    • (1999) Proc. ACL
    • Abney, S.1    McAllester, D.2    Pereira, F.3
  • 2
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine transation by jointly learning to align and translate
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine transation by jointly learning to align and translate. In Proc. ICLR.
    • (2015) Proc. ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 4
    • 84994173675 scopus 로고    scopus 로고
    • Pragmatic neural modelling in machine translation
    • Paul Baltescu and Phil Blunsom. 2015. Pragmatic neural modelling in machine translation. In Proc. NAACL.
    • (2015) Proc. NAACL
    • Baltescu, P.1    Blunsom, P.2
  • 6
    • 33646029849 scopus 로고    scopus 로고
    • An efficient implementation of a new DOP model
    • Rens Bod. 2003. An efficient implementation of a new DOP model. In Proc. EACL.
    • (2003) Proc. EACL
    • Bod, R.1
  • 7
    • 84994154623 scopus 로고    scopus 로고
    • A fast unified model for parsing and sentence understanding
    • abs/1603.06021
    • Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D. Manning, and Christopher Potts. 2006. A fast unified model for parsing and sentence understanding. CoRR, abs/1603.06021.
    • (2006) CoRR
    • Bowman, S.R.1    Gauthier, J.2    Rastogi, A.3    Gupta, R.4    Manning, C.D.5    Potts, C.6
  • 9
    • 84994077185 scopus 로고    scopus 로고
    • A Bayesian model for generative transition-based dependency parsing
    • abs/1506.04334
    • Jan Buys and Phil Blunsom. 2015a. A Bayesian model for generative transition-based dependency parsing. CoRR, abs/1506.04334.
    • (2015) CoRR
    • Buys, J.1    Blunsom, P.2
  • 10
    • 84944064158 scopus 로고    scopus 로고
    • Generative incremental dependency parsing with neural networks
    • Jan Buys and Phil Blunsom. 2015b. Generative incremental dependency parsing with neural networks. In Proc. ACL.
    • (2015) Proc. ACL
    • Buys, J.1    Blunsom, P.2
  • 11
    • 85036148712 scopus 로고    scopus 로고
    • A maximum-entropy-inspired parser
    • Eugene Charniak. 2000. A maximum-entropy-inspired parser. In Proc. NAACL.
    • (2000) Proc. NAACL
    • Charniak, E.1
  • 12
    • 80053260043 scopus 로고    scopus 로고
    • Top-down nearly-context-sensitive parsing
    • Eugene Charniak. 2010. Top-down nearly-context-sensitive parsing. In Proc. EMNLP.
    • (2010) Proc. EMNLP
    • Charniak, E.1
  • 16
    • 84976601573 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • Oxford
    • Arnaud Doucet and Adam M. Johansen. 2011. A tutorial on particle filtering and smoothing: Fifteen years later. In Handbook of Nonlinear Filtering. Oxford.
    • (2011) Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.M.2
  • 17
    • 84943742882 scopus 로고    scopus 로고
    • Transition-based dependency parsing with stack long short-term memory
    • Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition-based dependency parsing with stack long short-term memory. In Proc. ACL.
    • (2015) Proc. ACL
    • Dyer, C.1    Ballesteros, M.2    Ling, W.3    Matthews, A.4    Smith, N.A.5
  • 18
    • 0014732304 scopus 로고
    • An efficient context-free parsing algorithm
    • Jay Earley. 1970. An efficient context-free parsing algorithm. Communications of the ACM, 13(2):94-102.
    • (1970) Communications of the ACM , vol.13 , Issue.2 , pp. 94-102
    • Earley, J.1
  • 19
    • 26444565569 scopus 로고
    • Finding structure in time
    • Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science, 14:179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 20
    • 24044548035 scopus 로고    scopus 로고
    • A neural syntactic language model
    • Ahmad Emami and Frederick Jelinek. 2005. A neural syntactic language model. Machine Learning, 60:195-227.
    • (2005) Machine Learning , vol.60 , pp. 195-227
    • Emami, A.1    Jelinek, F.2
  • 21
  • 22
    • 84903479879 scopus 로고    scopus 로고
    • Phrase dependency machine translation with quasi-synchronous tree-to-tree features
    • Kevin Gimpel and Noah A. Smith. 2014. Phrase dependency machine translation with quasi-synchronous tree-to-tree features. Computational Linguistics, 40(2).
    • (2014) Computational Linguistics , vol.40 , Issue.2
    • Gimpel, K.1    Smith, N.A.2
  • 23
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proc. ICML.
    • (2010) Proc. ICML
    • Glorot, X.1    Bengio, Y.2
  • 24
    • 84989154066 scopus 로고    scopus 로고
    • Classes for fast maximum entropy training
    • cs.CL/0108006
    • Joshua Goodman. 2001. Classes for fast maximum entropy training. CoRR, cs.CL/0108006.
    • (2001) CoRR
    • Goodman, J.1
  • 25
    • 85118708235 scopus 로고    scopus 로고
    • Inducing history representations for broad coverage statistical parsing
    • James Henderson. 2003. Inducing history representations for broad coverage statistical parsing. In Proc. NAACL.
    • (2003) Proc. NAACL
    • Henderson, J.1
  • 26
    • 80053361259 scopus 로고    scopus 로고
    • Discriminative training of a neural network statistical parser
    • James Henderson. 2004. Discriminative training of a neural network statistical parser. In Proc. ACL.
    • (2004) Proc. ACL
    • Henderson, J.1
  • 27
    • 80053389291 scopus 로고    scopus 로고
    • Self-training PCFG grammars with latent annotations across languages
    • Zhongqiang Huang and Mary Harper. 2009. Self-training PCFG grammars with latent annotations across languages. In Proc. EMNLP.
    • (2009) Proc. EMNLP
    • Huang, Z.1    Harper, M.2
  • 28
    • 84930565154 scopus 로고
    • Computation of the probability of initial substring generation by stochastic context-free grammars
    • Frederick Jelinek and John D. Lafferty. 1991. Computation of the probability of initial substring generation by stochastic context-free grammars. Computational Linguistics, 17(3):315-323.
    • (1991) Computational Linguistics , vol.17 , Issue.3 , pp. 315-323
    • Jelinek, F.1    Lafferty, J.D.2
  • 29
    • 0013363096 scopus 로고    scopus 로고
    • Joint and conditional estimation of tagging and parsing models
    • Mark Johnson. 2001. Joint and conditional estimation of tagging and parsing models. In Proc. ACL.
    • (2001) Proc. ACL
    • Johnson, M.1
  • 33
    • 84904809076 scopus 로고    scopus 로고
    • Efficient higher-order CRFs for morphological tagging
    • Association for Computational Linguistics, Seattle, Washington, USA
    • Thomas Mueller, Helmut Schmid, and Hinrich Schütze. 2013. Efficient higher-order CRFs for morphological tagging. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 322-332. Association for Computational Linguistics, Seattle, Washington, USA. URL http://www.aclweb.org/anthology/D13-1032.
    • (2013) Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing , pp. 322-332
    • Mueller, T.1    Schmid, H.2    Schütze, H.3
  • 34
    • 79959911655 scopus 로고    scopus 로고
    • LL(∗): The foundation of the ANTLR parser generator
    • Terence Parr and Kathleen Fisher. 2011. LL(∗): The foundation of the ANTLR parser generator. In Proc. PLDI.
    • (2011) Proc. PLDI
    • Parr, T.1    Fisher, K.2
  • 35
    • 84858380058 scopus 로고    scopus 로고
    • Improved inference for unlexicalized parsing
    • Slav Petrov and Dan Klein. 2007. Improved inference for unlexicalized parsing. In Proc. NAACL.
    • (2007) Proc. NAACL
    • Petrov, S.1    Klein, D.2
  • 36
    • 0041079041 scopus 로고    scopus 로고
    • Probabilistic top-down parsing and language modeling
    • Brian Roark. 2001. Probabilistic top-down parsing and language modeling. Computational Linguistics, 27(2).
    • (2001) Computational Linguistics , vol.27 , Issue.2
    • Roark, B.1
  • 37
    • 1942519263 scopus 로고    scopus 로고
    • Robust garden path parsing
    • Brian Roark. 2004. Robust garden path parsing. JNLE, 10(1):1-24.
    • (2004) JNLE , vol.10 , Issue.1 , pp. 1-24
    • Roark, B.1
  • 38
    • 85116932591 scopus 로고    scopus 로고
    • A classifier-based parser with linear run-time complexity
    • Kenji Sagae and Alon Lavie. 2005. A classifier-based parser with linear run-time complexity. In Proc. IWPT.
    • (2005) Proc. IWPT
    • Sagae, K.1    Lavie, A.2
  • 39
    • 84878166911 scopus 로고    scopus 로고
    • Bayesian symbol-refined tree substitution grammars for syntactic parsing
    • Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and Masaaki Nagata. 2012. Bayesian symbol-refined tree substitution grammars for syntactic parsing. In Proc. ACL.
    • (2012) Proc. ACL
    • Shindo, H.1    Miyao, Y.2    Fujino, A.3    Nagata, M.4
  • 42
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christopher D. Manning. 2011. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Proc. NIPS.
    • (2011) Proc. NIPS
    • Socher, R.1    Huang, E.H.2    Pennington, J.3    Ng, A.Y.4    Manning, C.D.5
  • 43
  • 44
    • 22044454971 scopus 로고    scopus 로고
    • The neural network pushdown automaton: Architecture, dynamics and training
    • Adaptive Processing of Sequences and Data Structures
    • Guo-Zheng Sun, C. Lee Giles, and Hsing-Hen Chen. 1998. The neural network pushdown automaton: Architecture, dynamics and training. In Adaptive Processing of Sequences and Data Structures, volume 1387 of Lecture Notes in Computer Science, pages 296-345.
    • (1998) Lecture Notes in Computer Science , vol.1387 , pp. 296-345
    • Sun, G.-Z.1    Giles, C.L.2    Chen, H.-H.3
  • 45
    • 84943797465 scopus 로고    scopus 로고
    • Improved semantic representations from tree-structured long short-term memory networks
    • Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. In Proc. ACL.
    • (2015) Proc. ACL
    • Tai, K.S.1    Socher, R.2    Manning, C.D.3
  • 46
    • 85119621244 scopus 로고    scopus 로고
    • A latent variable model for generative dependency parsing
    • Ivan Titov and James Henderson. 2007. A latent variable model for generative dependency parsing. In Proc. IWPT.
    • (2007) Proc. IWPT
    • Titov, I.1    Henderson, J.2
  • 47
    • 84983470508 scopus 로고    scopus 로고
    • Feature-rich part-of-speech tagging with a cyclic dependency network
    • Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proc. NAACL.
    • (2003) Proc. NAACL
    • Toutanova, K.1    Klein, D.2    Manning, C.D.3    Singer, Y.4
  • 49
    • 84943746080 scopus 로고    scopus 로고
    • Feature optimization for constituent parsing via neural networks
    • Zhiguo Wang, Haitao Mi, and Nianwen Xue. 2015. Feature optimization for constituent parsing via neural networks. In Proc. ACL-IJCNLP.
    • (2015) Proc. ACL-IJCNLP
    • Wang, Z.1    Mi, H.2    Xue, N.3
  • 50
    • 84906923055 scopus 로고    scopus 로고
    • Joint POS tagging and transition-based constituent parsing in Chinese with non-local features
    • Zhiguo Wang and Nianwen Xue. 2014. Joint POS tagging and transition-based constituent parsing in Chinese with non-local features. In Proc. ACL.
    • (2014) Proc. ACL
    • Wang, Z.1    Xue, N.2
  • 51
    • 84959897734 scopus 로고    scopus 로고
    • Semantically conditioned LSTM-based natural language generation for spoken dialogue systems
    • Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and Steve Young. 2015. Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. In Proc. EMNLP.
    • (2015) Proc. EMNLP
    • Wen, T.-H.1    Gašić, M.2    Mrkšić, N.3    Su, P.-H.4    Vandyke, D.5    Young, S.6
  • 53
    • 20444401478 scopus 로고    scopus 로고
    • The Penn Chinese TreeBank: Phrase structure annotation of a large corpus
    • Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer. 2005. The Penn Chinese TreeBank: Phrase structure annotation of a large corpus. Nat. Lang. Eng., 11(2).
    • (2005) Nat. Lang. Eng. , vol.11 , Issue.2
    • Xue, N.1    Xia, F.2    Chiou, F.-D.3    Palmer, M.4
  • 55
    • 79952778019 scopus 로고    scopus 로고
    • Syntactic processing using the generalized perceptron and beam search
    • Yue Zhang and Stephen Clark. 2011. Syntactic processing using the generalized perceptron and beam search. Computational Linguistics, 37(1).
    • (2011) Computational Linguistics , vol.37 , Issue.1
    • Zhang, Y.1    Clark, S.2
  • 56
    • 84905693218 scopus 로고    scopus 로고
    • Fast and accurate shift-reduce constituent parsing
    • Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. 2013. Fast and accurate shift-reduce constituent parsing. In Proc. ACL.
    • (2013) Proc. ACL
    • Zhu, M.1    Zhang, Y.2    Chen, W.3    Zhang, M.4    Zhu, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.