-
1
-
-
84994018872
-
Red blood cell-facilitated photodynamic therapy for Cancer treatment
-
[1] Tang, W., Zhen, Z., Wang, M., Wang, H., CHuang, Y., Zhang, W., Wang, G., Todd, T., Cowger, T., Chen, H., Liu, L., Li, Z., Xie, J., Red blood cell-facilitated photodynamic therapy for Cancer treatment. Adv. Funct. Mater. 26 (2016), 1757–1768.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 1757-1768
-
-
Tang, W.1
Zhen, Z.2
Wang, M.3
Wang, H.4
CHuang, Y.5
Zhang, W.6
Wang, G.7
Todd, T.8
Cowger, T.9
Chen, H.10
Liu, L.11
Li, Z.12
Xie, J.13
-
2
-
-
84920837701
-
Cancer statistics, 2015
-
[2] Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, 2015. CA Cancer J. Clin. 65 (2015), 5–29.
-
(2015)
CA Cancer J. Clin.
, vol.65
, pp. 5-29
-
-
Siegel, R.L.1
Miller, K.D.2
Jemal, A.3
-
3
-
-
84864696659
-
Nanotechnology applied to overcome tumor drug resistance
-
[3] Gao, Z., Zhang, L., Sun, Y., Nanotechnology applied to overcome tumor drug resistance. J. Control Release 162 (2012), 45–55.
-
(2012)
J. Control Release
, vol.162
, pp. 45-55
-
-
Gao, Z.1
Zhang, L.2
Sun, Y.3
-
4
-
-
80054713553
-
Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo
-
[4] Lu, H.L., Syu, W.J., Nishiyama, N., Kataoka, K., Lai, P.S., Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J. Control Release 155 (2011), 458–464.
-
(2011)
J. Control Release
, vol.155
, pp. 458-464
-
-
Lu, H.L.1
Syu, W.J.2
Nishiyama, N.3
Kataoka, K.4
Lai, P.S.5
-
5
-
-
82755189461
-
Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia
-
[5] Ding, H.Y., Yu, H.J., Dong, Y., Tian, R.H., Huang, G., Boothman, D.A., et al. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J. Control. Release 156 (2011), 276–280.
-
(2011)
J. Control. Release
, vol.156
, pp. 276-280
-
-
Ding, H.Y.1
Yu, H.J.2
Dong, Y.3
Tian, R.H.4
Huang, G.5
Boothman, D.A.6
-
6
-
-
0037129482
-
New halogenated phenylbacteriochlorins and their efficiency in singlet-oxygen sensitization
-
[6] Pineiro, M., Gonsalves, A.M.D.R., Pereira, M.M., Formosinho, S.J., Arnaut, L.G., New halogenated phenylbacteriochlorins and their efficiency in singlet-oxygen sensitization. J. Phys. Chem. A 106 (2002), 3787–3795.
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 3787-3795
-
-
Pineiro, M.1
Gonsalves, A.M.D.R.2
Pereira, M.M.3
Formosinho, S.J.4
Arnaut, L.G.5
-
7
-
-
84922008022
-
Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence
-
[7] Zhang, C., Zhao, K.L., Bu, W.B., Ni, D.L., Liu, Y.Y., Feng, J.W., et al. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem. Int. Ed. 54 (2015), 1770–1774.
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 1770-1774
-
-
Zhang, C.1
Zhao, K.L.2
Bu, W.B.3
Ni, D.L.4
Liu, Y.Y.5
Feng, J.W.6
-
8
-
-
84945368806
-
Activatable ferritin nanocomplex for real-time monitoring of Caspase-3 activation during photodynamic therapy
-
[8] Wang, J.J., Zhang, L.W., Chen, M.L., Gao, S., Zhu, L., Activatable ferritin nanocomplex for real-time monitoring of Caspase-3 activation during photodynamic therapy. Acs Appl. Mater. Inter. 7 (2015), 23248–23256.
-
(2015)
Acs Appl. Mater. Inter.
, vol.7
, pp. 23248-23256
-
-
Wang, J.J.1
Zhang, L.W.2
Chen, M.L.3
Gao, S.4
Zhu, L.5
-
9
-
-
0032540701
-
Photodynamic therapy
-
[9] Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., et al. Photodynamic therapy. J. Natl. Cancer Inst. 90 (1998), 889–905.
-
(1998)
J. Natl. Cancer Inst.
, vol.90
, pp. 889-905
-
-
Dougherty, T.J.1
Gomer, C.J.2
Henderson, B.W.3
Jori, G.4
Kessel, D.5
Korbelik, M.6
-
10
-
-
50249098813
-
Photodynamic therapy for treatment of solid tumors - potential and technical challenges
-
[10] Huang, Z., Xu, H.P., Meyers, A.D., Musani, A.I., Wang, L.W., Tagg, R., et al. Photodynamic therapy for treatment of solid tumors - potential and technical challenges. Technol. Cancer Res. T 7 (2008), 309–320.
-
(2008)
Technol. Cancer Res. T
, vol.7
, pp. 309-320
-
-
Huang, Z.1
Xu, H.P.2
Meyers, A.D.3
Musani, A.I.4
Wang, L.W.5
Tagg, R.6
-
11
-
-
2942590732
-
Exploiting tumour hypoxia in cancer treatment
-
[11] Brown, J.M., Wilson, W.R., Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4 (2004), 437–447.
-
(2004)
Nat. Rev. Cancer
, vol.4
, pp. 437-447
-
-
Brown, J.M.1
Wilson, W.R.2
-
12
-
-
0035925098
-
Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects
-
[12] Hockel, M., Vaupel, P., Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer I 93 (2001), 266–276.
-
(2001)
J. Natl. Cancer I
, vol.93
, pp. 266-276
-
-
Hockel, M.1
Vaupel, P.2
-
13
-
-
34547121206
-
Hypoxia in cancer: significance and impact on clinical outcome
-
[13] Vaupel, P., Mayer, A., Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metast Rev. 26 (2007), 225–239.
-
(2007)
Cancer Metast Rev.
, vol.26
, pp. 225-239
-
-
Vaupel, P.1
Mayer, A.2
-
14
-
-
0023216024
-
Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse-tumor
-
[14] Henderson, B.W., Fingar, V.H., Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse-tumor. Cancer Res. 47 (1987), 3110–3114.
-
(1987)
Cancer Res.
, vol.47
, pp. 3110-3114
-
-
Henderson, B.W.1
Fingar, V.H.2
-
15
-
-
84875661741
-
Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly
-
[15] Jin, C.S., Lovell, J.F., Chen, J., Zheng, G., Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. Acs Nano 7 (2013), 2541–2550.
-
(2013)
Acs Nano
, vol.7
, pp. 2541-2550
-
-
Jin, C.S.1
Lovell, J.F.2
Chen, J.3
Zheng, G.4
-
16
-
-
84941695649
-
Plasmonic vesicles of amphiphilic nanocrystals: optically active multifunctional platform for Cancer diagnosis and therapy
-
[16] Song, J.B., Huang, P., Duan, H.W., Chen, X.Y., Plasmonic vesicles of amphiphilic nanocrystals: optically active multifunctional platform for Cancer diagnosis and therapy. Accounts Chem. Res. 48 (2015), 2506–2515.
-
(2015)
Accounts Chem. Res.
, vol.48
, pp. 2506-2515
-
-
Song, J.B.1
Huang, P.2
Duan, H.W.3
Chen, X.Y.4
-
17
-
-
84960306658
-
Polysaccharide-based nanoparticles for theranostic nanomedicine
-
[17] Swierczewska, M., Han, H.S., Kim, K., Park, J.H., Lee, S., Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev. 99 (2016), 70–84.
-
(2016)
Adv. Drug Deliv. Rev.
, vol.99
, pp. 70-84
-
-
Swierczewska, M.1
Han, H.S.2
Kim, K.3
Park, J.H.4
Lee, S.5
-
18
-
-
84949808148
-
Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics
-
[18] Nguyen, K.T., Zhao, Y., Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc. Chem. Res. 48 (2015), 3016–3025.
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 3016-3025
-
-
Nguyen, K.T.1
Zhao, Y.2
-
19
-
-
84955262054
-
Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy
-
[19] Gao, S., Zhang, L.W., Wang, G.H., Yang, K., Chen, M.L., Tian, R., et al. Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials 79 (2016), 36–45.
-
(2016)
Biomaterials
, vol.79
, pp. 36-45
-
-
Gao, S.1
Zhang, L.W.2
Wang, G.H.3
Yang, K.4
Chen, M.L.5
Tian, R.6
-
20
-
-
84959512516
-
Nanotubes-embedded indocyanine green-hyaluronic acid nanoparticles for photoacoustic-imaging-guided phototherapy
-
[20] Wang, G., Zhang, F., Tian, R., Zhang, L., Fu, G., Yang, L., et al. Nanotubes-embedded indocyanine green-hyaluronic acid nanoparticles for photoacoustic-imaging-guided phototherapy. ACS Appl. Mater. Interfaces 8 (2016), 5608–5617.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 5608-5617
-
-
Wang, G.1
Zhang, F.2
Tian, R.3
Zhang, L.4
Fu, G.5
Yang, L.6
-
21
-
-
84883215535
-
Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against Cancer
-
[21] Zhen, Z.P., Tang, W., Guo, C.L., Chen, H.M., Lin, X., Liu, G., et al. Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against Cancer. Acs Nano 7 (2013), 6988–6996.
-
(2013)
Acs Nano
, vol.7
, pp. 6988-6996
-
-
Zhen, Z.P.1
Tang, W.2
Guo, C.L.3
Chen, H.M.4
Lin, X.5
Liu, G.6
-
22
-
-
84919756204
-
Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided Cancer synergistic phototherapy
-
[22] Sheng, Z.H., Hu, D.H., Zheng, M.B., Zhao, P.F., Liu, H.L., Gao, D.Y., et al. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided Cancer synergistic phototherapy. Acs Nano 8 (2014), 12310–12322.
-
(2014)
Acs Nano
, vol.8
, pp. 12310-12322
-
-
Sheng, Z.H.1
Hu, D.H.2
Zheng, M.B.3
Zhao, P.F.4
Liu, H.L.5
Gao, D.Y.6
-
23
-
-
33845300821
-
Vascular targeted nanoparticles for imaging and treatment of brain tumors
-
[23] Reddy, G.R., Bhojani, M.S., McConville, P., Moody, J., Moffat, B.A., Hall, D.E., et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12 (2006), 6677–6686.
-
(2006)
Clin. Cancer Res.
, vol.12
, pp. 6677-6686
-
-
Reddy, G.R.1
Bhojani, M.S.2
McConville, P.3
Moody, J.4
Moffat, B.A.5
Hall, D.E.6
-
24
-
-
84907341406
-
A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation
-
[24] Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun., 5, 2014, 4596.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4596
-
-
Ge, J.1
Lan, M.2
Zhou, B.3
Liu, W.4
Guo, L.5
Wang, H.6
-
25
-
-
84876152030
-
Triplet photosensitizers: from molecular design to applications
-
[25] Zhao, J.Z., Wu, W.H., Sun, J.F., Guo, S., Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 42 (2013), 5323–5351.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 5323-5351
-
-
Zhao, J.Z.1
Wu, W.H.2
Sun, J.F.3
Guo, S.4
-
26
-
-
0033231402
-
Photodynamic therapeutics: basic principles and clinical applications
-
[26] Sharman, W.M., Allen, C.M., van Lier, J.E., Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today 4 (1999), 507–517.
-
(1999)
Drug Discov. Today
, vol.4
, pp. 507-517
-
-
Sharman, W.M.1
Allen, C.M.2
van Lier, J.E.3
-
27
-
-
84922382737
-
H2O2-Activatable and O-2-Evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells
-
[27] Chen, H.C., Tian, J.W., He, W.J., Guo, Z.J., H2O2-Activatable and O-2-Evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 137 (2015), 1539–1547.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 1539-1547
-
-
Chen, H.C.1
Tian, J.W.2
He, W.J.3
Guo, Z.J.4
-
28
-
-
84971013962
-
Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy
-
[28] Zhu, W.W., Dong, Z.L., Fu, T.T., Liu, J.J., Chen, Q., Li, Y.G., et al. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 26 (2016), 5490–5498.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 5490-5498
-
-
Zhu, W.W.1
Dong, Z.L.2
Fu, T.T.3
Liu, J.J.4
Chen, Q.5
Li, Y.G.6
-
29
-
-
84946749423
-
Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy
-
[29] Cheng, Y.H., Cheng, H., Jiang, C.X., Qiu, X.F., Wang, K.K., Huan, W., et al. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 6 (2015), 8785–8793.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8785-8793
-
-
Cheng, Y.H.1
Cheng, H.2
Jiang, C.X.3
Qiu, X.F.4
Wang, K.K.5
Huan, W.6
-
30
-
-
84992755817
-
Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in Cancer therapies
-
[30] Song, X., Feng, L., Liang, C., Yang, K., Liu, Z., Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in Cancer therapies. Nano Lett. 16 (2016), 6145–6153.
-
(2016)
Nano Lett.
, vol.16
, pp. 6145-6153
-
-
Song, X.1
Feng, L.2
Liang, C.3
Yang, K.4
Liu, Z.5
-
31
-
-
33748165596
-
Reactive oxygen species in cancer cells: live by the sword, die by the sword
-
[31] Schumacker, P.T., Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10 (2006), 175–176.
-
(2006)
Cancer Cell
, vol.10
, pp. 175-176
-
-
Schumacker, P.T.1
-
32
-
-
0026021362
-
Production of large amounts of hydrogen-peroxide by human tumor-cells
-
[32] Szatrowski, T.P., Nathan, C.F., Production of large amounts of hydrogen-peroxide by human tumor-cells. Cancer Res. 51 (1991), 794–798.
-
(1991)
Cancer Res.
, vol.51
, pp. 794-798
-
-
Szatrowski, T.P.1
Nathan, C.F.2
-
33
-
-
84899427766
-
Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response
-
[33] Prasad, P., Gordijo, C.R., Abbasi, A.Z., Maeda, A., Ip, A., Rauth, A.M., et al. Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. Acs Nano 8 (2014), 3202–3212.
-
(2014)
Acs Nano
, vol.8
, pp. 3202-3212
-
-
Prasad, P.1
Gordijo, C.R.2
Abbasi, A.Z.3
Maeda, A.4
Ip, A.5
Rauth, A.M.6
-
34
-
-
85027938518
-
Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for Cancer treatment
-
[34] Gordijo, C.R., Abbasi, A.Z., Amini, M.A., Lip, H.Y., Maeda, A., Cai, P., et al. Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for Cancer treatment. Adv. Funct. Mater. 25 (2015), 1858–1872.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 1858-1872
-
-
Gordijo, C.R.1
Abbasi, A.Z.2
Amini, M.A.3
Lip, H.Y.4
Maeda, A.5
Cai, P.6
-
35
-
-
79955063673
-
Hyaluronan-CD44 interactions as potential targets for cancer therapy
-
[35] Misra, S., Heldin, P., Hascall, V.C., Karamanos, N.K., Skandalis, S.S., Markwald, R.R., et al. Hyaluronan-CD44 interactions as potential targets for cancer therapy. Febs J. 278 (2011), 1429–1443.
-
(2011)
Febs J.
, vol.278
, pp. 1429-1443
-
-
Misra, S.1
Heldin, P.2
Hascall, V.C.3
Karamanos, N.K.4
Skandalis, S.S.5
Markwald, R.R.6
-
36
-
-
0037155805
-
A requirement for the CD44 cytoplasmic domain for hyaluronan binding, pericellular matrix assembly, and receptor-mediated endocytosis in COS-7 cells
-
[36] Jiang, H., Peterson, R.S., Wang, W.H., Bartnik, E., Knudson, C.B., Knudson, W., A requirement for the CD44 cytoplasmic domain for hyaluronan binding, pericellular matrix assembly, and receptor-mediated endocytosis in COS-7 cells. J. Biol. Chem. 277 (2002), 10531–10538.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 10531-10538
-
-
Jiang, H.1
Peterson, R.S.2
Wang, W.H.3
Bartnik, E.4
Knudson, C.B.5
Knudson, W.6
-
37
-
-
0032994105
-
Tumor promotion by hydrogen peroxide in rat liver epithelial cells
-
[37] Huang, R.P., Peng, A., Hossain, M.Z., Fan, Y., Jagdale, A., Boynton, A.L., Tumor promotion by hydrogen peroxide in rat liver epithelial cells. Carcinogenesis 20 (1999), 485–492.
-
(1999)
Carcinogenesis
, vol.20
, pp. 485-492
-
-
Huang, R.P.1
Peng, A.2
Hossain, M.Z.3
Fan, Y.4
Jagdale, A.5
Boynton, A.L.6
-
39
-
-
84859147185
-
Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors
-
[39] Zhu, J.Y., He, J.H., Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. Acs Appl. Mater. Inter. 4 (2012), 1770–1776.
-
(2012)
Acs Appl. Mater. Inter.
, vol.4
, pp. 1770-1776
-
-
Zhu, J.Y.1
He, J.H.2
-
40
-
-
84919713372
-
Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy
-
[40] Zhang, L.W., Gao, S., Zhang, F., Yang, K., Ma, Q.J., Zhu, L., Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. Acs Nano 8 (2014), 12250–12258.
-
(2014)
Acs Nano
, vol.8
, pp. 12250-12258
-
-
Zhang, L.W.1
Gao, S.2
Zhang, F.3
Yang, K.4
Ma, Q.J.5
Zhu, L.6
-
41
-
-
33847615239
-
Preparation of MnO2 nanoparticles by directly mixing potassium permanganate and polyelectrolyte aqueous solutions
-
[41] Luo, Y.L., Preparation of MnO2 nanoparticles by directly mixing potassium permanganate and polyelectrolyte aqueous solutions. Mater. Lett. 61 (2007), 1893–1895.
-
(2007)
Mater. Lett.
, vol.61
, pp. 1893-1895
-
-
Luo, Y.L.1
-
42
-
-
84883450302
-
Acidic extracellular microenvironment and cancer
-
[42] Kato, Y., Ozawa, S., Miyamoto, C., Maehata, Y., Suzuki, A., Maeda, T., et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 13 (2013), 89–97.
-
(2013)
Cancer Cell Int.
, vol.13
, pp. 89-97
-
-
Kato, Y.1
Ozawa, S.2
Miyamoto, C.3
Maehata, Y.4
Suzuki, A.5
Maeda, T.6
-
43
-
-
33746149756
-
Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice
-
[43] Rofstad, E.K., Mathiesen, B., Kindem, K., Galappathi, K., Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 66 (2006), 6699–6707.
-
(2006)
Cancer Res.
, vol.66
, pp. 6699-6707
-
-
Rofstad, E.K.1
Mathiesen, B.2
Kindem, K.3
Galappathi, K.4
-
44
-
-
78650987029
-
PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo
-
[44] Choi, K.Y., Min, K.H., Yoon, H.Y., Kim, K., Park, J.H., Kwon, I.C., et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 32 (2011), 1880–1889.
-
(2011)
Biomaterials
, vol.32
, pp. 1880-1889
-
-
Choi, K.Y.1
Min, K.H.2
Yoon, H.Y.3
Kim, K.4
Park, J.H.5
Kwon, I.C.6
-
45
-
-
0037711396
-
Photodynamic therapy for cancer
-
[45] Dolmans, D.E.J.G.J., Fukumura, D., Jain, R.K., Photodynamic therapy for cancer. Nat. Rev. Cancer 3 (2003), 380–387.
-
(2003)
Nat. Rev. Cancer
, vol.3
, pp. 380-387
-
-
Dolmans, D.E.J.G.J.1
Fukumura, D.2
Jain, R.K.3
-
46
-
-
24644518439
-
Porphyrin-fullerene C-60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy
-
[46] Milanesio, M.E., Alvarez, M.G., Rivarola, V., Silber, J.J., Durantini, E.N., Porphyrin-fullerene C-60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy. Photochem. Photobiol. 81 (2005), 891–897.
-
(2005)
Photochem. Photobiol.
, vol.81
, pp. 891-897
-
-
Milanesio, M.E.1
Alvarez, M.G.2
Rivarola, V.3
Silber, J.J.4
Durantini, E.N.5
-
47
-
-
0000088662
-
Singlet oxygen quantum yields from halogenated chlorins: potential new photodynamic therapy agents
-
[47] Pineiro, M., Pereira, M.M., Gonsalves, A.M.D.R., Arnaut, L.G., Formosinho, S.J., Singlet oxygen quantum yields from halogenated chlorins: potential new photodynamic therapy agents. J. Photochem. Photobiol. A 138 (2001), 147–157.
-
(2001)
J. Photochem. Photobiol. A
, vol.138
, pp. 147-157
-
-
Pineiro, M.1
Pereira, M.M.2
Gonsalves, A.M.D.R.3
Arnaut, L.G.4
Formosinho, S.J.5
-
48
-
-
0028369668
-
Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells
-
[48] Carter, W.O., Narayanan, P.K., Robinson, J.P., Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leukoc. Biol. 55 (1994), 253–258.
-
(1994)
J. Leukoc. Biol.
, vol.55
, pp. 253-258
-
-
Carter, W.O.1
Narayanan, P.K.2
Robinson, J.P.3
-
49
-
-
70350335729
-
Self-assembled hyaluronic acid nanoparticles for active tumor targeting
-
[49] Choi, K.Y., Chung, H., Min, K.H., Yoon, H.Y., Kim, K., Park, J.H., et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31 (2010), 106–114.
-
(2010)
Biomaterials
, vol.31
, pp. 106-114
-
-
Choi, K.Y.1
Chung, H.2
Min, K.H.3
Yoon, H.Y.4
Kim, K.5
Park, J.H.6
-
50
-
-
84989875792
-
Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated tL.A macrophages toward m1-like phenotype and 11 attenuating tumor hypoxia (vol 10, pg 633, 2016)
-
3872-3872
-
[50] Song, M.L., Liu, T., Shi, C.R., Zhang, X.Z., Chen, X.Y., Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated tL.A macrophages toward m1-like phenotype and 11 attenuating tumor hypoxia (vol 10, pg 633, 2016). Acs Nano, 10, 2016 3872-3872.
-
(2016)
Acs Nano
, vol.10
-
-
Song, M.L.1
Liu, T.2
Shi, C.R.3
Zhang, X.Z.4
Chen, X.Y.5
|