-
1
-
-
84898047210
-
1990-2010 global cardiovascular disease atlas
-
[1] Moran, A.E., Roth, G.A., Narula, J., Mensah, G.A., 1990-2010 global cardiovascular disease atlas. Glob. Heart 9 (2014), 3–16.
-
(2014)
Glob. Heart
, vol.9
, pp. 3-16
-
-
Moran, A.E.1
Roth, G.A.2
Narula, J.3
Mensah, G.A.4
-
2
-
-
84861323605
-
Endothelial dysfunction: the early predictor of atherosclerosis
-
[2] Mudau, M., Genis, A., Lochner, A., Strijdom, H., Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J. Afr. 23 (2012), 222–231.
-
(2012)
Cardiovasc J. Afr.
, vol.23
, pp. 222-231
-
-
Mudau, M.1
Genis, A.2
Lochner, A.3
Strijdom, H.4
-
3
-
-
20444458775
-
Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair
-
[3] Schmidt-Lucke, C., Rössig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kämper, U., Dimmeler, S., Zeiher, A.M., Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111 (2005), 2981–2987.
-
(2005)
Circulation
, vol.111
, pp. 2981-2987
-
-
Schmidt-Lucke, C.1
Rössig, L.2
Fichtlscherer, S.3
Vasa, M.4
Britten, M.5
Kämper, U.6
Dimmeler, S.7
Zeiher, A.M.8
-
4
-
-
33644791294
-
Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice
-
[4] George, J., Afek, A., Abashidze, A., Shmilovich, H., Deutsch, V., Kopolovich, J., Miller, H., Keren, G., Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 25 (2005), 2636–2641.
-
(2005)
Arterioscler. Thromb. Vasc. Biol.
, vol.25
, pp. 2636-2641
-
-
George, J.1
Afek, A.2
Abashidze, A.3
Shmilovich, H.4
Deutsch, V.5
Kopolovich, J.6
Miller, H.7
Keren, G.8
-
5
-
-
84975297457
-
NAMPT and NAMPT-controlled NAD metabolism in vascular repair
-
[5] Wang, P., Li, W.L., Liu, J.M., Miao, C.Y., NAMPT and NAMPT-controlled NAD metabolism in vascular repair. J. Cardiovasc Pharmacol. 67 (2016), 474–481.
-
(2016)
J. Cardiovasc Pharmacol.
, vol.67
, pp. 474-481
-
-
Wang, P.1
Li, W.L.2
Liu, J.M.3
Miao, C.Y.4
-
6
-
-
34147118466
-
Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2
-
[6] Kim, S.R., Bae, S.K., Choi, K.S., Park, S.Y., Jun, H.O., Lee, J.Y., Jang, H.O., Yun, I., Yoon, K.H., Kim, Y.J., Yoo, M.A., Kim, K.W., Bae, M.K., Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem. Biophys. Res. Commun. 357 (2007), 150–156.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.357
, pp. 150-156
-
-
Kim, S.R.1
Bae, S.K.2
Choi, K.S.3
Park, S.Y.4
Jun, H.O.5
Lee, J.Y.6
Jang, H.O.7
Yun, I.8
Yoon, K.H.9
Kim, Y.J.10
Yoo, M.A.11
Kim, K.W.12
Bae, M.K.13
-
7
-
-
65649123838
-
Involvement of dimethylarginine dimethylaminohydrolase-2 in visfatin-enhanced angiogenic function of endothelial cells
-
[7] Xiao, J., Xiao, Z.J., Liu, Z.G., Gong, H.Y., Yuan, Q., Wang, S., Li, Y.J., Jiang, D.J., Involvement of dimethylarginine dimethylaminohydrolase-2 in visfatin-enhanced angiogenic function of endothelial cells. Diabetes Metab. Res. Rev. 25 (2009), 242–249.
-
(2009)
Diabetes Metab. Res. Rev.
, vol.25
, pp. 242-249
-
-
Xiao, J.1
Xiao, Z.J.2
Liu, Z.G.3
Gong, H.Y.4
Yuan, Q.5
Wang, S.6
Li, Y.J.7
Jiang, D.J.8
-
8
-
-
33846693322
-
The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals
-
[8] Revollo, J.R., Grimm, A.A., Imai, S., The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr. Opin. Gastroenterol. 23 (2007), 164–170.
-
(2007)
Curr. Opin. Gastroenterol.
, vol.23
, pp. 164-170
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.3
-
9
-
-
34249696938
-
Extension of human cell lifespan by nicotinamide phosphoribosyltransferase
-
[9] van der Veer, E., Ho, C., O'Neil, C., Barbosa, N., Scott, R., Cregan, S.P., Pickering, J.G., Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 282 (2007), 10841–10845.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 10841-10845
-
-
van der Veer, E.1
Ho, C.2
O'Neil, C.3
Barbosa, N.4
Scott, R.5
Cregan, S.P.6
Pickering, J.G.7
-
10
-
-
43649087274
-
High glucose downregulates endothelial progenitor cell number via SIRT1
-
[10] Balestrieri, M.L., Rienzo, M., Felice, F., Rossiello, R., Grimaldi, V., Milone, L., Casamassimi, A., Servillo, L., Farzati, B., Giovane, A., Napoli, C., High glucose downregulates endothelial progenitor cell number via SIRT1. Biochim. Biophys. Acta 1784 (2008), 936–945.
-
(2008)
Biochim. Biophys. Acta
, vol.1784
, pp. 936-945
-
-
Balestrieri, M.L.1
Rienzo, M.2
Felice, F.3
Rossiello, R.4
Grimaldi, V.5
Milone, L.6
Casamassimi, A.7
Servillo, L.8
Farzati, B.9
Giovane, A.10
Napoli, C.11
-
11
-
-
84978859509
-
Visfatin attenuates the ox-LDL-induced senescence of endothelial progenitor cells by upregulating SIRT1 expression through the PI3K/Akt/ERK pathway
-
[11] Ming, G.F., Tang, Y.J., Hu, K., Chen, Y., Huang, W.H., Xiao, J., Visfatin attenuates the ox-LDL-induced senescence of endothelial progenitor cells by upregulating SIRT1 expression through the PI3K/Akt/ERK pathway. Int. J. Mol. Med. 38 (2016), 643–649.
-
(2016)
Int. J. Mol. Med.
, vol.38
, pp. 643-649
-
-
Ming, G.F.1
Tang, Y.J.2
Hu, K.3
Chen, Y.4
Huang, W.H.5
Xiao, J.6
-
12
-
-
85027942151
-
Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease
-
[12] Bhan, A., Mandal, S.S., Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem 9 (2014), 1932–1956.
-
(2014)
ChemMedChem
, vol.9
, pp. 1932-1956
-
-
Bhan, A.1
Mandal, S.S.2
-
13
-
-
84924134321
-
Long noncoding RNAs in cardiovascular diseases
-
[13] Uchida, S., Dimmeler, S., Long noncoding RNAs in cardiovascular diseases. Circ. Res. 116 (2015), 737–750.
-
(2015)
Circ. Res.
, vol.116
, pp. 737-750
-
-
Uchida, S.1
Dimmeler, S.2
-
14
-
-
84899490778
-
Noncoding RNAs in vascular disease
-
[14] Leung, A., Natarajan, R., Noncoding RNAs in vascular disease. Curr. Opin. Cardiol. 29 (2014), 199–206.
-
(2014)
Curr. Opin. Cardiol.
, vol.29
, pp. 199-206
-
-
Leung, A.1
Natarajan, R.2
-
15
-
-
84894372783
-
Identification, stability and expression of Sirt1 antisense long non-coding RNA
-
[15] Wang, Y., Pang, W.J., Wei, N., Xiong, Y., Wu, W.J., Zhao, C.Z., Shen, Q.W., Yang, G.S., Identification, stability and expression of Sirt1 antisense long non-coding RNA. Gene 539 (2014), 117–124.
-
(2014)
Gene
, vol.539
, pp. 117-124
-
-
Wang, Y.1
Pang, W.J.2
Wei, N.3
Xiong, Y.4
Wu, W.J.5
Zhao, C.Z.6
Shen, Q.W.7
Yang, G.S.8
-
16
-
-
84865727393
-
The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression
-
[16] Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J.B., Lipovich, L., Gonzalez, J.M., Thomas, M., Davis, C.A., Shiekhattar, R., Gingeras, T.R., Hubbard, T.J., Notredame, C., Harrow, J., Guigó, R., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22 (2012), 1775–1789.
-
(2012)
Genome Res.
, vol.22
, pp. 1775-1789
-
-
Derrien, T.1
Johnson, R.2
Bussotti, G.3
Tanzer, A.4
Djebali, S.5
Tilgner, H.6
Guernec, G.7
Martin, D.8
Merkel, A.9
Knowles, D.G.10
Lagarde, J.11
Veeravalli, L.12
Ruan, X.13
Ruan, Y.14
Lassmann, T.15
Carninci, P.16
Brown, J.B.17
Lipovich, L.18
Gonzalez, J.M.19
Thomas, M.20
Davis, C.A.21
Shiekhattar, R.22
Gingeras, T.R.23
Hubbard, T.J.24
Notredame, C.25
Harrow, J.26
Guigó, R.27
more..
-
17
-
-
84914100191
-
Functional interactions among microRNAs and long noncoding RNAs
-
[17] Yoon, J.H., Abdelmohsen, K., Gorospe, M., Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol. 34 (2014), 9–14.
-
(2014)
Semin. Cell Dev. Biol.
, vol.34
, pp. 9-14
-
-
Yoon, J.H.1
Abdelmohsen, K.2
Gorospe, M.3
-
18
-
-
0034724335
-
Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization
-
[18] Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W.M., Silver, M., Kearney, M., Li, T., Isner, J.M., Asahara, T., Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 3422–3427.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 3422-3427
-
-
Kalka, C.1
Masuda, H.2
Takahashi, T.3
Kalka-Moll, W.M.4
Silver, M.5
Kearney, M.6
Li, T.7
Isner, J.M.8
Asahara, T.9
-
19
-
-
0038108771
-
Endothelial progenitor cells: mobilization, differentiation, and homing
-
[19] Hristov, M., Erl, W., Weber, P.C., Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol. 23 (2003), 1185–1189.
-
(2003)
Arterioscler. Thromb. Vasc. Biol.
, vol.23
, pp. 1185-1189
-
-
Hristov, M.1
Erl, W.2
Weber, P.C.3
-
20
-
-
65649107670
-
Visfatin stimulates production of monocyte chemotactic protein-1 and interleukin-6 in human vein umbilical endothelial cells
-
[20] Liu, S.W., Qiao, S.B., Yuan, J.S., Liu, D.Q., Visfatin stimulates production of monocyte chemotactic protein-1 and interleukin-6 in human vein umbilical endothelial cells. Horm. Metab. Res. 41 (2009), 281–286.
-
(2009)
Horm. Metab. Res.
, vol.41
, pp. 281-286
-
-
Liu, S.W.1
Qiao, S.B.2
Yuan, J.S.3
Liu, D.Q.4
-
21
-
-
41949100421
-
Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells
-
[21] Kim, S.R., Bae, Y.H., Bae, S.K., Choi, K.S., Yoon, K.H., Koo, T.H., Jang, H.O., Yun, I., Kim, K.W., Kwon, Y.G., Yoo, M.A., Bae, M.K., Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim. Biophys. Acta 1783 (2008), 886–895.
-
(2008)
Biochim. Biophys. Acta
, vol.1783
, pp. 886-895
-
-
Kim, S.R.1
Bae, Y.H.2
Bae, S.K.3
Choi, K.S.4
Yoon, K.H.5
Koo, T.H.6
Jang, H.O.7
Yun, I.8
Kim, K.W.9
Kwon, Y.G.10
Yoo, M.A.11
Bae, M.K.12
-
22
-
-
64849099945
-
Visfatin-induced expression of inflammatory mediators in human endothelial cells through the NF-kappaB pathway
-
[22] Lee, W.J., Wu, C.S., Lin, H., Lee, I.T., Wu, C.M., Tseng, J.J., Chou, M.M., Sheu, W.H., Visfatin-induced expression of inflammatory mediators in human endothelial cells through the NF-kappaB pathway. Int. J. Obes. (Lond) 33 (2009), 465–472.
-
(2009)
Int. J. Obes. (Lond)
, vol.33
, pp. 465-472
-
-
Lee, W.J.1
Wu, C.S.2
Lin, H.3
Lee, I.T.4
Wu, C.M.5
Tseng, J.J.6
Chou, M.M.7
Sheu, W.H.8
-
23
-
-
63549150420
-
Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment
-
[23] Borradaile, N.M., Pickering, J.G., Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell 8 (2009), 100–112.
-
(2009)
Aging Cell
, vol.8
, pp. 100-112
-
-
Borradaile, N.M.1
Pickering, J.G.2
-
24
-
-
66849111706
-
Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo: translational implications for atherosclerosis
-
[24] Lovren, F., Pan, Y., Shukla, P.C., Quan, A., Teoh, H., Szmitko, P.E., Peterson, M.D., Gupta, M., Al-Omran, M., Verma, S., Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo: translational implications for atherosclerosis. Am. J. Physiol. Endocrinol. Metab. 296 (2009), E1440–E1449.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
, pp. E1440-E1449
-
-
Lovren, F.1
Pan, Y.2
Shukla, P.C.3
Quan, A.4
Teoh, H.5
Szmitko, P.E.6
Peterson, M.D.7
Gupta, M.8
Al-Omran, M.9
Verma, S.10
-
25
-
-
35349011597
-
Sirt1 modulates premature senescence-like phenotype in human endothelial cells
-
[25] Ota, H., Akishita, M., Eto, M., Iijima, K., Kaneki, M., Ouchi, Y., Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J. Mol. Cell Cardiol. 43 (2007), 571–579.
-
(2007)
J. Mol. Cell Cardiol.
, vol.43
, pp. 571-579
-
-
Ota, H.1
Akishita, M.2
Eto, M.3
Iijima, K.4
Kaneki, M.5
Ouchi, Y.6
-
26
-
-
77953457652
-
MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1
-
[26] Zhao, T., Li, J., Chen, A.F., MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 299 (2010), E110–E116.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.299
, pp. E110-E116
-
-
Zhao, T.1
Li, J.2
Chen, A.F.3
-
27
-
-
84946739697
-
The role of long intergenic noncoding RNA p21 in vascular endothelial cells
-
[27] He, C., Ding, J.W., Li, S., Wu, H., Jiang, Y.R., Yang, W., Teng, L., Yang, J., The role of long intergenic noncoding RNA p21 in vascular endothelial cells. DNA Cell Biol. 34 (2015), 677–683.
-
(2015)
DNA Cell Biol.
, vol.34
, pp. 677-683
-
-
He, C.1
Ding, J.W.2
Li, S.3
Wu, H.4
Jiang, Y.R.5
Yang, W.6
Teng, L.7
Yang, J.8
-
28
-
-
84917729694
-
LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity
-
[28] Wu, G., Cai, J., Han, Y., Chen, J., Huang, Z.P., Chen, C., Cai, Y., Huang, H., Yang, Y., Liu, Y., Xu, Z., He, D., Zhang, X., Hu, X., Pinello, L., Zhong, D., He, F., Yuan, G.C., Wang, D.Z., Zeng, C., LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130 (2014), 1452–1465.
-
(2014)
Circulation
, vol.130
, pp. 1452-1465
-
-
Wu, G.1
Cai, J.2
Han, Y.3
Chen, J.4
Huang, Z.P.5
Chen, C.6
Cai, Y.7
Huang, H.8
Yang, Y.9
Liu, Y.10
Xu, Z.11
He, D.12
Zhang, X.13
Hu, X.14
Pinello, L.15
Zhong, D.16
He, F.17
Yuan, G.C.18
Wang, D.Z.19
Zeng, C.20
more..
-
29
-
-
84943199880
-
The lncRNA MALAT1 protects the endothelium against ox-LDL-induced dysfunction via upregulating the expression of the miR-22-3p target genes CXCR2 and AKT
-
[29] Tang, Y., Jin, X., Xiang, Y., Chen, Y., Shen, C.X., Zhang, Y.C., Li, Y.G., The lncRNA MALAT1 protects the endothelium against ox-LDL-induced dysfunction via upregulating the expression of the miR-22-3p target genes CXCR2 and AKT. FEBS Lett. 589 (2015), 3189–3196.
-
(2015)
FEBS Lett.
, vol.589
, pp. 3189-3196
-
-
Tang, Y.1
Jin, X.2
Xiang, Y.3
Chen, Y.4
Shen, C.X.5
Zhang, Y.C.6
Li, Y.G.7
-
30
-
-
84876320555
-
Conserved expression of natural antisense transcripts in mammals
-
[30] Ling, M.H., Ban, Y., Wen, H., Wang, S.M., Ge, S.X., Conserved expression of natural antisense transcripts in mammals. BMC Genomics, 14, 2013, 243.
-
(2013)
BMC Genomics
, vol.14
, pp. 243
-
-
Ling, M.H.1
Ban, Y.2
Wen, H.3
Wang, S.M.4
Ge, S.X.5
-
31
-
-
84949554343
-
miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1
-
[31] Chen, H., Lu, Q., Fei, X., Shen, L., Jiang, D., Dai, D., miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1. Tumour Biol. 37 (2016), 6761–6768.
-
(2016)
Tumour Biol.
, vol.37
, pp. 6761-6768
-
-
Chen, H.1
Lu, Q.2
Fei, X.3
Shen, L.4
Jiang, D.5
Dai, D.6
-
32
-
-
79955509397
-
miR-22 represses cancer progression by inducing cellular senescence
-
[32] Xu, D., Takeshita, F., Hino, Y., Fukunaga, S., Kudo, Y., Tamaki, A., Matsunaga, J., Takahashi, R.U., Takata, T., Shimamoto, A., Ochiya, T., Tahara, H., miR-22 represses cancer progression by inducing cellular senescence. J. Cell Biol. 193 (2011), 409–424.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 409-424
-
-
Xu, D.1
Takeshita, F.2
Hino, Y.3
Fukunaga, S.4
Kudo, Y.5
Tamaki, A.6
Matsunaga, J.7
Takahashi, R.U.8
Takata, T.9
Shimamoto, A.10
Ochiya, T.11
Tahara, H.12
|