메뉴 건너뛰기




Volumn 222, Issue 2, 2008, Pages 189-206

Genetic algorithms for signal grouping in sensor validation: A comparison of the filter and wrapper approaches

Author keywords

fitter wrapper; multi objective genetic algorithms; principal component analysis; sensor monitoring; signal validation

Indexed keywords


EID: 84993804243     PISSN: 1748006X     EISSN: 17480078     Source Type: Journal    
DOI: 10.1243/1748006XJRR137     Document Type: Article
Times cited : (12)

References (38)
  • 5
    • 85054435084 scopus 로고
    • Neural network ensembles, cross-validation and active learning
    • Ed. Tesauro G. Touretzky D.S. Loen T.K. MIT press Cambridge, MA, USA
    • Krogh A. Vedelsby J. Neural network ensembles, cross-validation and active learning. Advances in newel information processing systems, (Eds Ed. Tesauro G. Touretzky D.S. Loen T.K.) 1995, Vol. 7, pp. 231–238 (MIT press, Cambridge, MA, USA)
    • (1995) Advances in newel information processing systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 6
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • Sharkey A.J.C. On combining artificial neural nets. Connection Sci., 1996, 8(3), 299–314
    • (1996) Connection Sci , vol.8 , Issue.3 , pp. 299-314
    • Sharkey, A.J.C.1
  • 7
    • 0003912827 scopus 로고
    • Adaptation in natural and artificial systems: An introductory analysis with application to biology
    • 4th edition MIT Press Cambridge, MA, USA
    • Holland J.H. Adaptation in natural and artificial systems: An introductory analysis with application to biology. Control and artificial intelligence, 4th edition, 1975 (MIT Press, Cambridge, MA, USA)
    • (1975) Control and artificial intelligence
    • Holland, J.H.1
  • 12
    • 85057372026 scopus 로고    scopus 로고
    • Statistical data mining with informational complexity and genetic algorithm
    • Ed. Bozdogan H. CRC Press London
    • Bozdogan H. Statistical data mining with informational complexity and genetic algorithm. Statistical data mining and knowledge discovery, (Ed. Ed. Bozdogan H.), 2003 (CRC Press, London)
    • (2003) Statistical data mining and knowledge discovery
    • Bozdogan, H.1
  • 16
    • 0019533482 scopus 로고
    • Principal component analysis in linear systems: Controllability, observability, and model reduction
    • Moore B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automatic Control, 1981, 26(1)
    • (1981) IEEE Trans. Automatic Control , vol.26 , Issue.1
    • Moore, B.1
  • 17
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • Baldi P. Hornik K. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 1989, 2(1), 53–58
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 20
    • 0030109164 scopus 로고    scopus 로고
    • Multiple-failure signal validation in nuclear power plants using artificial neural networks
    • Fantoni P.F. Mazzola A. Multiple-failure signal validation in nuclear power plants using artificial neural networks. Nuclear Technol., 1996, 113(3), 368–374
    • (1996) Nuclear Technol , vol.113 , Issue.3 , pp. 368-374
    • Fantoni, P.F.1    Mazzola, A.2
  • 21
    • 23344453352 scopus 로고    scopus 로고
    • Experiences and applications of Peano for online monitoring in power plants
    • (Elsevier)
    • Fantoni P.F. Experiences and applications of Peano for online monitoring in power plants. Progress in nuclear energy, 2005, Vol. 46, pp. 206–225, (Elsevier)
    • (2005) Progress in nuclear energy , vol.46 , pp. 206-225
    • Fantoni, P.F.1
  • 22
    • 2942564620 scopus 로고    scopus 로고
    • A soft-computing based classification procedure for the identification of transients in the steam generator of a pressurized water reactor
    • Marseguerra M. Zio E. Marcucci F. A soft-computing based classification procedure for the identification of transients in the steam generator of a pressurized water reactor. Annls Nuclear Energy, 2004, 31, 1429–1446
    • (2004) Annls Nuclear Energy , vol.31 , pp. 1429-1446
    • Marseguerra, M.1    Zio, E.2    Marcucci, F.3
  • 23
    • 0026849990 scopus 로고
    • Autoassociative neural networks
    • Kramer M.A. Autoassociative neural networks. Computers Chem. Engng, 1992, 16(4), 313–328
    • (1992) Computers Chem. Engng , vol.16 , Issue.4 , pp. 313-328
    • Kramer, M.A.1
  • 24
  • 25
    • 0033686502 scopus 로고    scopus 로고
    • A neuro-fuzzy model applied to full range signal validation of PWR nuclear power plant data
    • Fantoni P.F. A neuro-fuzzy model applied to full range signal validation of PWR nuclear power plant data. Int. J. General Systems, 2000, 29(2), 305–320
    • (2000) Int. J. General Systems , vol.29 , Issue.2 , pp. 305-320
    • Fantoni, P.F.1
  • 27
    • 28844457606 scopus 로고    scopus 로고
    • An extended classifiability index for feature selection in nuclear transients
    • Zio E. Baraldi P. Roverso D. An extended classifiability index for feature selection in nuclear transients. Annls Nuclear Energy, 2005, 32, 1632–1649
    • (2005) Annls Nuclear Energy , vol.32 , pp. 1632-1649
    • Zio, E.1    Baraldi, P.2    Roverso, D.3
  • 28
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R. John G. Wrappers for feature subset selection. Artif. Intelligence, 1997, 97, 273–324
    • (1997) Artif. Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 29
    • 33746363218 scopus 로고    scopus 로고
    • Selecting features for nuclear transients classification by means of genetic algorithms
    • Zio E. Baraldi P. Pedroni N. Selecting features for nuclear transients classification by means of genetic algorithms. IEEE Trans. Nuclear Sci., 2006, 53(3), 1479–1493
    • (2006) IEEE Trans. Nuclear Sci , vol.53 , Issue.3 , pp. 1479-1493
    • Zio, E.1    Baraldi, P.2    Pedroni, N.3
  • 32
    • 0742307292 scopus 로고    scopus 로고
    • Orthogonal forward selection and backward elimination algorithms for feature subset selection
    • Mao K.Z. Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Trans. Systems, Man, Cybernetics, Part B, 2004, 34(1), 629–634
    • (2004) IEEE Trans. Systems, Man, Cybernetics, Part B , vol.34 , Issue.1 , pp. 629-634
    • Mao, K.Z.1
  • 33
    • 0035294798 scopus 로고    scopus 로고
    • Feature selection using tabu search method
    • Zhang H. Sun G. Feature selection using tabu search method. Pattern Recognition, 2002, 35, 701–711, 2002
    • (2002) Pattern Recognition , vol.35 , pp. 701-711
    • Zhang, H.1    Sun, G.2
  • 34
    • 7044233665 scopus 로고    scopus 로고
    • Auto-associative models and generalized principal component analysis
    • Girard S. Lovleff S. Auto-associative models and generalized principal component analysis. J. Multivariate Analysis, 2005, 93(1), 21–39
    • (2005) J. Multivariate Analysis , vol.93 , Issue.1 , pp. 21-39
    • Girard, S.1    Lovleff, S.2
  • 36
    • 0024521543 scopus 로고
    • A concordance correlation coefficient to evaluate reproducibility
    • Lawrence I. Kuei L. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989, 45(1), 255–268
    • (1989) Biometrics , vol.45 , Issue.1 , pp. 255-268
    • Lawrence, I.1    Kuei, L.2
  • 37
    • 0022671625 scopus 로고
    • Percent agreement, Pearson's correlation, and kappa as measures of inter-examiner reliability
    • Hunt R.J. Percent agreement, Pearson's correlation, and kappa as measures of inter-examiner reliability. J. Dental Res., 1986, 65, 128–130
    • (1986) J. Dental Res , vol.65 , pp. 128-130
    • Hunt, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.