메뉴 건너뛰기




Volumn 6, Issue 3, 2016, Pages

Statistical mechanics of optimal convex inference in high dimensions

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; CLUSTERING ALGORITHMS; COMPUTATION THEORY; CONVEX OPTIMIZATION; CRAMER-RAO BOUNDS; INFERENCE ENGINES; MAXIMUM LIKELIHOOD ESTIMATION; PROBLEM SOLVING; RANDOM VARIABLES; SIGNAL TO NOISE RATIO; SITE SELECTION; STATISTICAL MECHANICS;

EID: 84992602703     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.6.031034     Document Type: Article
Times cited : (69)

References (46)
  • 2
    • 84862682946 scopus 로고    scopus 로고
    • Compressed Sensing, Sparsity, and Dimensionality in Neuronal Information Processing and Data Analysis
    • S. Ganguli and H. Sompolinsky, Compressed Sensing, Sparsity, and Dimensionality in Neuronal Information Processing and Data Analysis, Annu. Rev. Neurosci. 35, 485 (2012).
    • (2012) Annu. Rev. Neurosci , vol.35 , pp. 485
    • Ganguli, S.1    Sompolinsky, H.2
  • 3
    • 37549029793 scopus 로고    scopus 로고
    • The Properties of High-Dimensional Data Spaces: Implications for Exploring Gene and Protein Expression Data
    • R. Clarke, H.W. Ressom, A. Wang, J. Xuan, M. C. Liu, E. A. Gehan, and Y. Wang, The Properties of High-Dimensional Data Spaces: Implications for Exploring Gene and Protein Expression Data, Nat. Rev. Cancer 8, 37 (2008).
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 37
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3    Xuan, J.4    Liu, M.C.5    Gehan, E.A.6    Wang, Y.7
  • 4
    • 85104094046 scopus 로고    scopus 로고
    • Big Data Analytics in Healthcare: Promise and Potential
    • W. Raghupathi and V. Raghupathi, Big Data Analytics in Healthcare: Promise and Potential, Health Inf. Sci. Syst. 2, 3 (2014).
    • (2014) Health Inf. Sci. Syst , vol.2 , pp. 3
    • Raghupathi, W.1    Raghupathi, V.2
  • 5
    • 80051767239 scopus 로고    scopus 로고
    • Sparse High Dimensional Models in Economics
    • J. Fan, J. Lv, and L. Qi, Sparse High Dimensional Models in Economics, Ann. Rev. Econ. 3, 291 (2011).
    • (2011) Ann. Rev. Econ , vol.3 , pp. 291
    • Fan, J.1    Lv, J.2    Qi, L.3
  • 6
    • 84924178998 scopus 로고    scopus 로고
    • Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters
    • J. Leskovec, K. J. Lang, A. Dasgupta, and M.W. Mahoney, Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters, Internet Math. 6, 29 (2009).
    • (2009) Internet Math , vol.6 , pp. 29
    • Leskovec, J.1    Lang, K.J.2    Dasgupta, A.3    Mahoney, M.W.4
  • 8
    • 0346061723 scopus 로고    scopus 로고
    • High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality
    • D. L. Donoho, High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality, AMS Conference on Math Challenges of the 21st Century (2000), pp. 1-32, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.3392.
    • (2000) AMS Conference on Math Challenges of the 21st Century , pp. 1-32
    • Donoho, D.L.1
  • 10
    • 84875289428 scopus 로고    scopus 로고
    • Statistical Mechanics of Complex Neural Systems and High Dimensional Data
    • M. Advani, S. Lahiri, and S. Ganguli, Statistical Mechanics of Complex Neural Systems and High Dimensional Data, J. Stat. Mech. (2013) P03014.
    • (2013) J. Stat. Mech
    • Advani, M.1    Lahiri, S.2    Ganguli, S.3
  • 12
    • 33645063980 scopus 로고
    • Statistical Mechanics of Neural Networks Near Saturation
    • (N.Y.)
    • D. J. Amit, H. Gutfreund, and H. Sompolinsky, Statistical Mechanics of Neural Networks Near Saturation, Ann. Phys. (N.Y.) 173, 30 (1987).
    • (1987) Ann. Phys , vol.173 , pp. 30
    • Amit, D.J.1    Gutfreund, H.2    Sompolinsky, H.3
  • 13
    • 0002631885 scopus 로고
    • Optimal Storage Properties of Neural Network Models
    • E. Gardner and B. Derrida, Optimal Storage Properties of Neural Network Models, J. Phys. A 21, 271 (1988).
    • (1988) J. Phys. A , vol.21 , pp. 271
    • Gardner, E.1    Derrida, B.2
  • 14
    • 36149029786 scopus 로고
    • The Space of Interactions in Neural Network Models
    • E. Gardner, The Space of Interactions in Neural Network Models, J. Phys. A 21, 257 (1988).
    • (1988) J. Phys. A , vol.21 , pp. 257
    • Gardner, E.1
  • 15
    • 20544442268 scopus 로고    scopus 로고
    • Randomly Spread CDMA: Asymptotics via Statistical Physics
    • D. Guo and S. Verdú, Randomly Spread CDMA: Asymptotics via Statistical Physics, IEEE Trans. Inf. Theory 51, 1983 (2005).
    • (2005) IEEE Trans. Inf. Theory , vol.51 , pp. 1983
    • Guo, D.1    Verdú, S.2
  • 16
    • 77949635021 scopus 로고    scopus 로고
    • A Single-Letter Characterization of Optimal Noisy Compressed Sensing, Proceedings of the 47th Annual Allerton Conference on Communication, Control
    • (Allerton) (IEEE)
    • D. Gou, D. Baron, and S. Shamai, A Single-Letter Characterization of Optimal Noisy Compressed Sensing, in Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (IEEE, 2009), pp. 52-59, https://www.scholars.northwestern.edu/en/publications/a-single-letter-characterization-of-optimalnoisy-compressed-sens.
    • (2009) and Computing , pp. 52-59
    • Gou, D.1    Baron, D.2    Shamai, S.3
  • 17
    • 84858722178 scopus 로고    scopus 로고
    • Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing
    • (Curran Associates, Inc., Red Hook)
    • S. Rangan, V. Goyal, and A. K. Fletcher, Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing, in Advances in Neural Information Processing Systems 22 (Curran Associates, Inc., Red Hook, 2009), pp. 1545-1553.
    • (2009) Advances in Neural Information Processing Systems 22 , pp. 1545-1553
    • Rangan, S.1    Goyal, V.2    Fletcher, A.K.3
  • 18
    • 77952044476 scopus 로고    scopus 로고
    • Statistical Mechanics of Compressed Sensing
    • S. Ganguli and H. Sompolinsky, Statistical Mechanics of Compressed Sensing, Phys. Rev. Lett. 104, 188701 (2010).
    • (2010) Phys. Rev. Lett , vol.104
    • Ganguli, S.1    Sompolinsky, H.2
  • 19
    • 84866310626 scopus 로고    scopus 로고
    • Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices
    • F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices, J. Stat. Mech. (2012) P08009.
    • (2012) J. Stat. Mech
    • Krzakala, F.1    Mézard, M.2    Sausset, F.3    Sun, Y.4    Zdeborová, L.5
  • 23
    • 0001033261 scopus 로고
    • Robust Regression: Asymptotics, Conjectures and Monte Carlo
    • P. J. Huber, Robust Regression: Asymptotics, Conjectures and Monte Carlo, Ann. Stat. 1, 821 (1973).
    • (1973) Ann. Stat , vol.1 , pp. 821
    • Huber, P.J.1
  • 24
    • 0004272666 scopus 로고    scopus 로고
    • (Cambridge University Press, Cambridge, England)
    • A.W. van der Vaart, Asymptotic Statistics (Cambridge University Press, Cambridge, England, 2000), Vol. 3.
    • (2000) Asymptotic Statistics , vol.3
    • van der Vaart, A.W.1
  • 26
    • 0037418225 scopus 로고    scopus 로고
    • Optimally Sparse Representation in General (Non-orthogonal) Dictionaries via L1 Minimization
    • D. L. Donoho and M. Elad, Optimally Sparse Representation in General (Non-orthogonal) Dictionaries via L1 Minimization, Proc. Natl. Acad. Sci. U.S.A. 100, 2197 (2003).
    • (2003) Proc. Natl. Acad. Sci. U.S.A , vol.100 , pp. 2197
    • Donoho, D.L.1    Elad, M.2
  • 27
    • 31744440684 scopus 로고    scopus 로고
    • Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information
    • E. Candes, J. Romberg, and T. Tao, Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information., IEEE Trans. Inf. Theory 52, 489 (2006).
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 489
    • Candes, E.1    Romberg, J.2    Tao, T.3
  • 28
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by Linear Programming
    • E. Candes and T. Tao, Decoding by Linear Programming, IEEE Trans. Inf. Theory 51, 4203 (2005).
    • (2005) IEEE Trans. Inf. Theory , vol.51 , pp. 4203
    • Candes, E.1    Tao, T.2
  • 29
    • 85194972808 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • R. Tibshirani, Regression Shrinkage and Selection via the Lasso, J. R. Stat. Soc. Ser. B 58, 267 (1996).
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267
    • Tibshirani, R.1
  • 31
    • 84946763649 scopus 로고    scopus 로고
    • High Dimensional Robust M-estimation: Asymptotic Variance via Approximate Message Passing
    • D. Donoho and A. Montanari, High Dimensional Robust M-estimation: Asymptotic Variance via Approximate Message Passing, Probab. Theory Relat. Fields, doi:10.1007/s00440-015-0675-z (2013).
    • (2013) Probab. Theory Relat. Fields
    • Donoho, D.1    Montanari, A.2
  • 33
    • 23744513375 scopus 로고    scopus 로고
    • Constructing Free-Energy Approximations and Generalized Belief Propagation Algorithms
    • J. S. Yedidia, W. T. Freeman, and Y. Weiss, Constructing Free-Energy Approximations and Generalized Belief Propagation Algorithms, IEEE Trans. Inf. Theory 51, 2282 (2005).
    • (2005) IEEE Trans. Inf. Theory , vol.51 , pp. 2282
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3
  • 36
    • 79251496987 scopus 로고    scopus 로고
    • The Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing
    • M. Bayati and A. Montanari, The Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing, IEEE Trans. Inf. Theory 57, 764 (2011).
    • (2011) IEEE Trans. Inf. Theory , vol.57 , pp. 764
    • Bayati, M.1    Montanari, A.2
  • 37
    • 80054799706 scopus 로고    scopus 로고
    • Generalized Approximate Message Passing for Estimation with Random Linear Mixing
    • (ISIT), St. Petersburg, 2011 (IEEE, New York)
    • S. Rangan, Generalized Approximate Message Passing for Estimation with Random Linear Mixing, in IEEE International Symposium on Information Theory Proceedings (ISIT), St. Petersburg, 2011 (IEEE, New York, 2011), pp. 2168-2172.
    • (2011) IEEE International Symposium on Information Theory Proceedings , pp. 2168-2172
    • Rangan, S.1
  • 39
    • 84992542755 scopus 로고    scopus 로고
    • http://link.aps.org/supplemental/10.1103/PhysRevX.6.031034
  • 40
    • 0010860902 scopus 로고
    • The Estimation of the Location and Scale Parameters of a Continuous Population of Any Given Form
    • E. J. G. Pitman, The Estimation of the Location and Scale Parameters of a Continuous Population of Any Given Form, Biometrika 30, 391 (1939).
    • (1939) Biometrika , vol.30 , pp. 391
    • Pitman, E.J.G.1
  • 41
    • 84972487798 scopus 로고
    • Applications of the van Trees Inequality: A Bayesian Cramér-Rao Bound
    • R. D. Gill and B. Y. Levit, Applications of the van Trees Inequality: A Bayesian Cramér-Rao Bound, Bernoulli 1, 59 (1995).
    • (1995) Bernoulli , vol.1 , pp. 59
    • Gill, R.D.1    Levit, B.Y.2
  • 44
    • 0000263239 scopus 로고
    • Distribution of Eigenvalues for Some Sets of Random Matrices
    • V. A. Marchenko and L. A. Pastur, Distribution of Eigenvalues for Some Sets of Random Matrices, Mat. Sb. 114, 507 (1967).
    • (1967) Mat. Sb , vol.114 , pp. 507
    • Marchenko, V.A.1    Pastur, L.A.2
  • 45
    • 0000239522 scopus 로고
    • Completeness, Similar Regions, and Unbiased Estimation: Part I
    • E. L. Lehmann and H. Scheffé, Completeness, Similar Regions, and Unbiased Estimation: Part I, Ind. J. Stat. 10, 305 (1950).
    • (1950) Ind. J. Stat , vol.10 , pp. 305
    • Lehmann, E.L.1    Scheffé, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.