-
1
-
-
84874221936
-
Artificial neural networks in medical diagnosis
-
Amato, F. et al., 2013. Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine, 11, pp.47-58.
-
(2013)
Journal of Applied Biomedicine
, vol.11
, pp. 47-58
-
-
Amato, F.1
-
2
-
-
84887478929
-
Decision tree classifiers for automated medical diagnosis
-
Azar, A. & El-Metwally, S., 2013. Decision tree classifiers for automated medical diagnosis. Neural Computing and Applications, 23(7-8), pp.2387-2403.
-
(2013)
Neural Computing and Applications
, vol.23
, Issue.7-8
, pp. 2387-2403
-
-
Azar, A.1
El-Metwally, S.2
-
3
-
-
80455158268
-
Statistical learning methods as a preprocessing step for survival analysis: Evaluation of concept using lung cancer data
-
Behera, M. et al., 2011. Statistical learning methods as a preprocessing step for survival analysis: evaluation of concept using lung cancer data. BioMedical Engineering OnLine, 10(1), pp.10-97.
-
(2011)
BioMedical Engineering OnLine
, vol.10
, Issue.1
, pp. 10-97
-
-
Behera, M.1
-
4
-
-
11244346676
-
Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: A preliminary study on patients with hip fracture
-
Bessho, M. et al., 2004. Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: A preliminary study on patients with hip fracture. Journal of Orthopaedic Science, 9, pp.545-550.
-
(2004)
Journal of Orthopaedic Science
, vol.9
, pp. 545-550
-
-
Bessho, M.1
-
5
-
-
84861556816
-
Reporting and methods in clinical prediction research: A systematic review
-
Bouwmeester, W. et al., 2012. Reporting and Methods in Clinical Prediction Research: A Systematic Review. PLoS Med, 9(5), p.e1001221.
-
(2012)
PLoS Med
, vol.9
, Issue.5
, pp. e1001221
-
-
Bouwmeester, W.1
-
7
-
-
85009072850
-
Machine learning methodology in bioinformatics
-
N. Kasabov, ed. Springer Berlin Heidelberg
-
Campbell, C., 2014. Machine Learning Methodology in Bioinformatics. In N. Kasabov, ed. Springer Handbook of Bio-/Neuroinformatics. Springer Berlin Heidelberg, pp. 185-206.
-
(2014)
Springer Handbook of Bio-/Neuroinformatics
, pp. 185-206
-
-
Campbell, C.1
-
8
-
-
22844455541
-
Partitioning nominal attributes in decision trees
-
Coppersmith, D., Hong, S.J. & J., H., 1999. Partitioning Nominal Attributes in Decision Trees. Journal of Data Mining and Knowledge Discovery, 3, pp.197-217.
-
(1999)
Journal of Data Mining and Knowledge Discovery
, vol.3
, pp. 197-217
-
-
Coppersmith, D.1
Hong, S.J.2
-
9
-
-
0035810969
-
Artificial neural network-based method of screening heart murmurs in children
-
DeGroff, C.G. et al., 2001. Artificial neural network-based method of screening heart murmurs in children. Circulation, 103, pp.2711-2716.
-
(2001)
Circulation
, vol.103
, pp. 2711-2716
-
-
DeGroff, C.G.1
-
10
-
-
78650202814
-
Epidemiology of hip fracture: Worldwide geographic variation
-
Dhanwal, D.K. et al., 2011. Epidemiology of hip fracture: Worldwide geographic variation. Indian Journal of Orthopaedics, 45(1), pp.15-22.
-
(2011)
Indian Journal of Orthopaedics
, vol.45
, Issue.1
, pp. 15-22
-
-
Dhanwal, D.K.1
-
11
-
-
84905981145
-
Comparison of the performance of log-logistic regression and artificial neural networks for predicting breast cancer relapse
-
Faradmal, J. et al., 2014. Comparison of the performance of log-logistic regression and artificial neural networks for predicting breast cancer relapse. Asian Pacific journal of cancer prevention : APJCP, 15(14), pp.5883-5888.
-
(2014)
Asian Pacific Journal of Cancer Prevention : APJCP
, vol.15
, Issue.14
, pp. 5883-5888
-
-
Faradmal, J.1
-
12
-
-
25444465350
-
Learning from little: Comparison of classifiers given little training
-
Forman, G. & Cohen, I., 2004. Learning from Little: Comparison of Classifiers Given Little Training. Proc PKDD, 19, pp.161-172.
-
(2004)
Proc PKDD
, vol.19
, pp. 161-172
-
-
Forman, G.1
Cohen, I.2
-
13
-
-
79951551258
-
Estimation of prediction error by using K-fold cross-validation
-
Fushiki, T., 2009. Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21, pp.137-146.
-
(2009)
Statistics and Computing
, vol.21
, pp. 137-146
-
-
Fushiki, T.1
-
14
-
-
79952405336
-
Using neural network as a screening and educational tool for abnormal glucose tolerance in the community
-
Gao, W. et al., 2011. Using neural network as a screening and educational tool for abnormal glucose tolerance in the community. Archives of Public Health, 68(4), pp.143-154.
-
(2011)
Archives of Public Health
, vol.68
, Issue.4
, pp. 143-154
-
-
Gao, W.1
-
17
-
-
38749149232
-
Mathematical relationships between bone density and mechanical properties: A literature review
-
Helgason, B. et al., 2008. Mathematical relationships between bone density and mechanical properties: A literature review. Clinical Biomechanics, 23, pp.135-146.
-
(2008)
Clinical Biomechanics
, vol.23
, pp. 135-146
-
-
Helgason, B.1
-
18
-
-
46249092236
-
Testing a neural coding hypothesis using surrogate data
-
Hirata, Y. et al., 2008. Testing a neural coding hypothesis using surrogate data. Journal of Neuroscience Methods, 172, pp.312-322.
-
(2008)
Journal of Neuroscience Methods
, vol.172
, pp. 312-322
-
-
Hirata, Y.1
-
19
-
-
44649090674
-
Gene prediction in metagenomic fragments: A large scale machine learning approach
-
Hoff, K. et al., 2008. Gene prediction in metagenomic fragments: A large scale machine learning approach. BMC Bioinformatics, 9(1), pp.9-217.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 9-217
-
-
Hoff, K.1
-
20
-
-
84868702962
-
Decision tree-based learning to predict patient controlled analgesia consumption and readjustment
-
Hu, Y.-J. et al., 2012. Decision tree-based learning to predict patient controlled analgesia consumption and readjustment. BMC Medical Informatics and Decision Making, 12(1), pp.12-131.
-
(2012)
BMC Medical Informatics and Decision Making
, vol.12
, Issue.1
, pp. 12-131
-
-
Hu, Y.-J.1
-
21
-
-
0004044075
-
-
New York: IEEE. Inza, I. et al., 2010
-
Hudson, D.L. & Cohen, M.E., 2000. Neural networks and artificial intelligence for biomedical engineering, New York: IEEE. Inza, I. et al., 2010.
-
(2000)
Neural Networks and Artificial Intelligence for Biomedical Engineering
-
-
Hudson, D.L.1
Cohen, M.E.2
-
22
-
-
84992516917
-
An indispensable tool in bioinformatics
-
R. Matthiesen, ed. Humana Press
-
Machine Learning: An Indispensable Tool in Bioinformatics. In R. Matthiesen, ed. Bioinformatics Methods in Clinical Research. Humana Press, pp. 25-48.
-
Bioinformatics Methods in Clinical Research
, pp. 25-48
-
-
Learning, M.1
-
23
-
-
0026438801
-
The apparent incidence of hip fracture in Europe: A study of national register sources
-
Johnel, O. et al., 1992. The apparent incidence of hip fracture in Europe: A study of national register sources. Osteoporosis International, 2(6), pp.298-302.
-
(1992)
Osteoporosis International
, vol.2
, Issue.6
, pp. 298-302
-
-
Johnel, O.1
-
24
-
-
0344157373
-
Prediction of femoral fracture load using automated finite element modeling
-
Keyak, J.H. et al., 1997. Prediction of femoral fracture load using automated finite element modeling. Journal of Biomechanics, 31, pp.125-133.
-
(1997)
Journal of Biomechanics
, vol.31
, pp. 125-133
-
-
Keyak, J.H.1
-
25
-
-
84930189998
-
Neural networks for analysis of trabecular bone in osteoarthritis
-
Khovanova, N., Shaikhina, T. & Mallick, K., 2014. Neural networks for analysis of trabecular bone in osteoarthritis. Bioinspired, Biomimetic and Nanobiomaterials, 4(1), pp.90-100.
-
(2014)
Bioinspired, Biomimetic and Nanobiomaterials
, vol.4
, Issue.1
, pp. 90-100
-
-
Khovanova, N.1
Shaikhina, T.2
Mallick, K.3
-
27
-
-
0033544441
-
Process modeling with neural networks using small experimental datasets
-
Lanouette, R., Thibault, J. & Valade, J.L., 1999. Process modeling with neural networks using small experimental datasets. Computers & Chemical Engineering, 23(9), pp.1167-1176.
-
(1999)
Computers & Chemical Engineering
, vol.23
, Issue.9
, pp. 1167-1176
-
-
Lanouette, R.1
Thibault, J.2
Valade, J.L.3
-
28
-
-
84880335873
-
Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: A prospective case-control cohort analysis
-
Leung, R. et al., 2013. Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: a prospective case-control cohort analysis. BMC Nephrology, 14(1), pp.14-162.
-
(2013)
BMC Nephrology
, vol.14
, Issue.1
, pp. 14-162
-
-
Leung, R.1
-
29
-
-
84876336190
-
Significant IgG subclass heterogeneity in HLA-specific antibodies: Implications for pathogenicity, prognosis, and the rejection response
-
Lowe, D. et al., 2013. Significant IgG subclass heterogeneity in HLA-specific antibodies: Implications for pathogenicity, prognosis, and the rejection response. Human Immunology, 74, pp.666-672.
-
(2013)
Human Immunology
, vol.74
, pp. 666-672
-
-
Lowe, D.1
-
30
-
-
0001362410
-
The Levenberg-Marquardt algorithm: Implementation and theory
-
More, J.J., 1978. The Levenberg-Marquardt algorithm: Implementation and theory. Lecture Notes in Mathematics, 630, pp.105-116.
-
(1978)
Lecture Notes in Mathematics
, vol.630
, pp. 105-116
-
-
More, J.J.1
-
31
-
-
0025536870
-
Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
-
Nguyen, D. & Widrow, B., 1990. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. IEEE International Joint Conference on Neural Networks, 3, pp.21-26.
-
(1990)
IEEE International Joint Conference on Neural Networks
, vol.3
, pp. 21-26
-
-
Nguyen, D.1
Widrow, B.2
-
32
-
-
35348846442
-
Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age
-
Perilli, E. et al., 2007. Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age. Bone, 41, pp.760-768.
-
(2007)
Bone
, vol.41
, pp. 760-768
-
-
Perilli, E.1
-
33
-
-
0036778479
-
Decision trees: An overview and their use in medicine
-
Podgorelec, V. et al., 2002. Decision trees: An overview and their use in medicine. Journal of Medical Systems, 26, pp.445-463.
-
(2002)
Journal of Medical Systems
, vol.26
, pp. 445-463
-
-
Podgorelec, V.1
-
34
-
-
84906877423
-
Artificial neural networks in hard tissue engineering: Another look at age-dependence of trabecular bone properties in osteoarthritis
-
Valencia: IEEE
-
Shaikhina, T., Khovanova, N. & Mallick, K., 2014. Artificial Neural Networks in Hard Tissue Engineering: Another Look at Age-Dependence of Trabecular Bone Properties in Osteoarthritis. In IEEE EMBS International Conference on Biomedical & Health Informatics. Valencia: IEEE, pp.484-487.
-
(2014)
IEEE EMBS International Conference on Biomedical & Health Informatics
, pp. 484-487
-
-
Shaikhina, T.1
Khovanova, N.2
Mallick, K.3
-
35
-
-
84855551703
-
Osteoarthritis : Diagnosis and treatment
-
Sinusas, K., 2012. Osteoarthritis : diagnosis and treatment. American Family Physician, 85(1), pp.49-56.
-
(2012)
American Family Physician
, vol.85
, Issue.1
, pp. 49-56
-
-
Sinusas, K.1
-
36
-
-
44049111332
-
Testing for nonlinearity in time series: The method of surrogate data
-
Theiler, J. et al., 1992. Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena, 58, pp.77-94.
-
(1992)
Physica D: Nonlinear Phenomena
, vol.58
, pp. 77-94
-
-
Theiler, J.1
-
37
-
-
84880110259
-
Hip fracture risk assessment: Artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study
-
Tseng, W.-J. et al., 2013. Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study. BMC Musculoskeletal Disorders, 14(1), pp.14-207.
-
(2013)
BMC Musculoskeletal Disorders
, vol.14
, Issue.1
, pp. 14-207
-
-
Tseng, W.-J.1
-
38
-
-
77953342831
-
Comparing sigmoid transfer functions for neural network
-
April
-
Yonaba, H., Anctil, F. & Fortin, V., 2010. Comparing Sigmoid Transfer Functions for Neural Network. Journal of Hydrologic Engineering, (April), pp.275-283.
-
(2010)
Journal of Hydrologic Engineering
, pp. 275-283
-
-
Yonaba, H.1
Anctil, F.2
Fortin, V.3
-
39
-
-
84905981311
-
Comparison between artificial neural network and Cox regression model in predicting the survival rate of gastric cancer patients
-
Zhu, L. et al., 2013. Comparison between artificial neural network and Cox regression model in predicting the survival rate of gastric cancer patients. Biomedical reports, 1(5), pp.757-760.
-
(2013)
Biomedical Reports
, vol.1
, Issue.5
, pp. 757-760
-
-
Zhu, L.1
|