메뉴 건너뛰기




Volumn 15, Issue 14, 2014, Pages 5883-5888

Comparison of the performance of log-logistic regression and artificial neural networks for predicting breast cancer relapse

Author keywords

Artificial neural networks; Breast cancer; Disease free; Log logistic regression; Prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BREAST TUMOR; COHORT ANALYSIS; FEMALE; HUMAN; MIDDLE AGED; MORTALITY; NEOPLASM RECURRENCE, LOCAL; PATHOLOGY; PROGNOSIS; RECEIVER OPERATING CHARACTERISTIC; STATISTICAL MODEL;

EID: 84905981145     PISSN: 15137368     EISSN: None     Source Type: Journal    
DOI: 10.7314/APJCP.2014.15.14.5883     Document Type: Article
Times cited : (29)

References (33)
  • 2
    • 56149108170 scopus 로고    scopus 로고
    • Application of artificial neural network-based survival analysis on two breast cancer datasets
    • Chi CL, Street WN, Wolberg WH (2007). Application of artificial neural network-based survival analysis on two breast cancer datasets. AMIA Annu Symp Proc, 130-4.
    • (2007) AMIA Annu Symp Proc , pp. 130-134
    • Chi, C.L.1    Street, W.N.2    Wolberg, W.H.3
  • 3
    • 56149108170 scopus 로고    scopus 로고
    • Application of artificial neural network-based survival analysis on two breast cancer datasets
    • AMIA Annual Symposium proceedings/AMIA Symposium AMIA Symposium
    • Chi CL, Street WN, Wolberg WH (2007). Application of artificial neural network-based survival analysis on two breast cancer datasets. AMIA Annual Symposium proceedings/AMIA Symposium AMIA Symposium, 130-4.
    • (2007) , pp. 130-134
    • Chi, C.L.1    Street, W.N.2    Wolberg, W.H.3
  • 4
    • 33846883996 scopus 로고    scopus 로고
    • Artificial neural network: predicted vs observed survival in patients with colonic cancer
    • Dolgobrodov SG, Moore P, Marshall R, et al. (2007). Artificial neural network: predicted vs observed survival in patients with colonic cancer. Dis Colon Rectum, 50, 184-91.
    • (2007) Dis Colon Rectum , vol.50 , pp. 184-191
    • Dolgobrodov, S.G.1    Moore, P.2    Marshall, R.3
  • 5
    • 84867295504 scopus 로고    scopus 로고
    • A swarm optimized neural network system for classification of microcalcification in mammograms
    • Dheeba J, Selvi ST (2011). A swarm optimized neural network system for classification of microcalcification in mammograms. J Med Syst, 36, 3051-61.
    • (2011) J Med Syst , vol.36 , pp. 3051-3061
    • Dheeba, J.1    Selvi, S.T.2
  • 7
    • 78650689459 scopus 로고    scopus 로고
    • Comparison of three adjuvant chemotherapy regimes using an extended log-logistic model in women with operable breast cancer
    • Faradmal J, Kazemnejad A, Khodabakhshi R, Gohari MR, Hajizadeh E (2010). Comparison of three adjuvant chemotherapy regimes using an extended log-logistic model in women with operable breast cancer. Asian Pac J Cancer Prev, 11, 353-8.
    • (2010) Asian Pac J Cancer Prev , vol.11 , pp. 353-358
    • Faradmal, J.1    Kazemnejad, A.2    Khodabakhshi, R.3    Gohari, M.R.4    Hajizadeh, E.5
  • 8
    • 80052632043 scopus 로고    scopus 로고
    • Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients
    • Giordano A, Giuliano M, De Laurentiis M, et al. (2011). Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients. Breast Cancer Res Treat, 129, 451-8.
    • (2011) Breast Cancer Res Treat , vol.129 , pp. 451-458
    • Giordano, A.1    Giuliano, M.2    de Laurentiis, M.3
  • 9
    • 84858022470 scopus 로고    scopus 로고
    • Use of an artificial neural network to determine prognostic factors in colorectal cancer patients
    • Gohari MR, Biglarian A, Bakhshi E, Pourhoseingholi MA (2011). Use of an artificial neural network to determine prognostic factors in colorectal cancer patients. Asian Pac J Cancer Prev, 12, 1469-72.
    • (2011) Asian Pac J Cancer Prev , vol.12 , pp. 1469-1472
    • Gohari, M.R.1    Biglarian, A.2    Bakhshi, E.3    Pourhoseingholi, M.A.4
  • 10
    • 84969418861 scopus 로고    scopus 로고
    • Comparison of artificial neural networks and cox regression models in prediction of kidney transplant survival
    • Hashemian AH, Beiranvand B, Rezaei M, Bardideh A, Zand- Karimi E. (2013). Comparison of artificial neural networks and cox regression models in prediction of kidney transplant survival. Int J Adv Biol Biom Res, 1, 1204-12.
    • (2013) Int J Adv Biol Biom Res , vol.1 , pp. 1204-1212
    • Hashemian, A.H.1    Beiranvand, B.2    Rezaei, M.3    Bardideh, A.4    Zand-Karimi, E.5
  • 11
    • 52949124120 scopus 로고    scopus 로고
    • A comparative study of survival models for breast cancer prognostication on microarray data: does a single gene beat them all?
    • Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G (2008). A comparative study of survival models for breast cancer prognostication on microarray data: does a single gene beat them all? Bioinformatics, 24, 2200-8.
    • (2008) Bioinformatics , vol.24 , pp. 2200-2208
    • Haibe-Kains, B.1    Desmedt, C.2    Sotiriou, C.3    Bontempi, G.4
  • 13
    • 27944509655 scopus 로고    scopus 로고
    • Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks
    • Jerez JM, Franco L, Alba E, et al. (2005). Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks. Breast Cancer Res Tr, 94, 65-72.
    • (2005) Breast Cancer Res Tr , vol.94 , pp. 65-72
    • Jerez, J.M.1    Franco, L.2    Alba, E.3
  • 14
    • 84861934345 scopus 로고    scopus 로고
    • Comparison of survival predictions for rats with hemorrhagic shocks using an artificial neural network and support vector machine
    • Jang KH, Yoo TK, Choi JY, et al. (2011). Comparison of survival predictions for rats with hemorrhagic shocks using an artificial neural network and support vector machine. Conf Proc IEEE Eng Med Biol Soc, 2011, 91-4.
    • (2011) Conf Proc IEEE Eng Med Biol Soc , vol.2011 , pp. 91-94
    • Jang, K.H.1    Yoo, T.K.2    Choi, J.Y.3
  • 16
    • 84870043235 scopus 로고    scopus 로고
    • A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability
    • Kim SM, Han H, Park JM, et al. (2012). A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability. J Digit Imaging, 25, 599-606.
    • (2012) J Digit Imaging , vol.25 , pp. 599-606
    • Kim, S.M.1    Han, H.2    Park, J.M.3
  • 17
    • 34248647301 scopus 로고    scopus 로고
    • Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
    • Kurt I, Ture M, Kurum AT (2008). Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Systems with Applications, 34, 366-74.
    • (2008) Expert Systems with Applications , vol.34 , pp. 366-374
    • Kurt, I.1    Ture, M.2    Kurum, A.T.3
  • 18
    • 77953769694 scopus 로고    scopus 로고
    • Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes
    • Kazemnejad A, Batvandi Z, Faradmal J (2010). Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes. Eastern Mediterranean Health J, 16, 15-20.
    • (2010) Eastern Mediterranean Health J , vol.16 , pp. 15-20
    • Kazemnejad, A.1    Batvandi, Z.2    Faradmal, J.3
  • 19
    • 44349110097 scopus 로고    scopus 로고
    • Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach
    • Lancashire LJ, Rees RC, Ball GR (2008). Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach. Artif Intell Med, 43, 99-111.
    • (2008) Artif Intell Med , vol.43 , pp. 99-111
    • Lancashire, L.J.1    Rees, R.C.2    Ball, G.R.3
  • 20
    • 84867316536 scopus 로고    scopus 로고
    • Breast cancer classification based on advanced multi dimensional fuzzy neural network
    • Naghibi S, Teshnehlab M, Shoorehdeli MA (2011). Breast cancer classification based on advanced multi dimensional fuzzy neural network. J Med Syst, 36, 2713-20.
    • (2011) J Med Syst , vol.36 , pp. 2713-2720
    • Naghibi, S.1    Teshnehlab, M.2    Shoorehdeli, M.A.3
  • 21
    • 84905991866 scopus 로고    scopus 로고
    • National Cancer Institute
    • National Cancer Institute (2012). Cancer terms. URL: http:// training.seer.cancer.gov/disease/cancer/terms.html.
    • (2012) Cancer terms
  • 22
    • 84862285756 scopus 로고    scopus 로고
    • Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey
    • Parsaeian M, Mohammad K, Mahmoudi M, Zeraati H (2012). Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey. Iranian J Publ Health, 41, 86-92.
    • (2012) Iranian J Publ Health , vol.41 , pp. 86-92
    • Parsaeian, M.1    Mohammad, K.2    Mahmoudi, M.3    Zeraati, H.4
  • 23
    • 0035530910 scopus 로고    scopus 로고
    • The lognormal distribution as a model for survival time in cancer, with an emphasis on prognostic factors
    • Royston P (2001). The lognormal distribution as a model for survival time in cancer, with an emphasis on prognostic factors. Stat Neerlandica, 55, 89-104.
    • (2001) Stat Neerlandica , vol.55 , pp. 89-104
    • Royston, P.1
  • 24
    • 1442350707 scopus 로고    scopus 로고
    • Non-linear survival analysis using neural networks
    • Ripley RM, Harris AL, Tarassenko L (2004). Non-linear survival analysis using neural networks. Stat Med, 23, 25-42.
    • (2004) Stat Med , vol.23 , pp. 25-42
    • Ripley, R.M.1    Harris, A.L.2    Tarassenko, L.3
  • 25
    • 77956926311 scopus 로고    scopus 로고
    • Use of an artificial neural network to predict head injury outcome
    • Rughani AI, Dumont TM, Lu Z, et al. (2010). Use of an artificial neural network to predict head injury outcome. J Neurosurg, 113, 585-90.
    • (2010) J Neurosurg , vol.113 , pp. 585-590
    • Rughani, A.I.1    Dumont, T.M.2    Lu, Z.3
  • 26
    • 79961135005 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Development Core Team Vienna, Austria
    • R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Vienna, Austria.
    • (2011)
  • 27
    • 84871689557 scopus 로고    scopus 로고
    • Artificial neural network for prediction of distant metastasis in colorectal cancer
    • Biglarian A, Bakhshi E, Gohari MR, Khodabakhshi R (2012). Artificial neural network for prediction of distant metastasis in colorectal cancer. Asian Pac J Cancer Prev, 13, 927-30.
    • (2012) Asian Pac J Cancer Prev , vol.13 , pp. 927-930
    • Biglarian, A.1    Bakhshi, E.2    Gohari, M.R.3    Khodabakhshi, R.4
  • 28
    • 84860356620 scopus 로고    scopus 로고
    • Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery
    • Shi H-Y, Lee K-T, Lee H-H, et al. (2012) Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery. PLoS ONE, 7, 35781.
    • (2012) PLoS ONE , vol.7 , pp. 35781
    • Shi, H.-Y.1    Lee, K.-T.2    Lee, H.-H.3
  • 29
    • 78649767494 scopus 로고    scopus 로고
    • Determining factors that predict technique survival on peritoneal dialysis: application of regression and artificial neural network methods
    • Tangri N, Ansell D, Naimark D (2011). Determining factors that predict technique survival on peritoneal dialysis: application of regression and artificial neural network methods. Nephron Clin Pract, 118, 93-100.
    • (2011) Nephron Clin Pract , vol.118 , pp. 93-100
    • Tangri, N.1    Ansell, D.2    Naimark, D.3
  • 30
    • 34250736743 scopus 로고    scopus 로고
    • Evaluating prediction rules for t-year survivors with censored regression models
    • Uno H, Cai T, Tian L, Wei LJ (2007). Evaluating prediction rules for t-year survivors with censored regression models. J Am Stat Assoc, 102, 527-32.
    • (2007) J Am Stat Assoc , vol.102 , pp. 527-532
    • Uno, H.1    Cai, T.2    Tian, L.3    Wei, L.J.4
  • 31
    • 84905978806 scopus 로고    scopus 로고
    • WHO
    • WHO (2012). Who cancer. URL: http://www.who.int/ mediacentre/factsheets/fs297/en/.
    • (2012) Who cancer
  • 32
    • 0034726204 scopus 로고    scopus 로고
    • Comparison of the performance of neural network methods and cox regression for censored survival data
    • Xiang A, Lapuerta P, Ryutov A, Buckley J, Azen S (2000). Comparison of the performance of neural network methods and cox regression for censored survival data. Comput Stat Data An, 34, 243-57.
    • (2000) Comput Stat Data An , vol.34 , pp. 243-257
    • Xiang, A.1    Lapuerta, P.2    Ryutov, A.3    Buckley, J.4    Azen, S.5
  • 33
    • 84905981311 scopus 로고    scopus 로고
    • Comparison between artificial neural network and cox regression model in predicting the survival rate of gastric cancer patients
    • Zhu L, Luo W, Su M, et al. (2013). Comparison between artificial neural network and cox regression model in predicting the survival rate of gastric cancer patients. Biomedical Reports, 1, 757-60.
    • (2013) Biomedical Reports , vol.1 , pp. 757-760
    • Zhu, L.1    Luo, W.2    Su, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.