-
2
-
-
56149108170
-
Application of artificial neural network-based survival analysis on two breast cancer datasets
-
Chi CL, Street WN, Wolberg WH (2007). Application of artificial neural network-based survival analysis on two breast cancer datasets. AMIA Annu Symp Proc, 130-4.
-
(2007)
AMIA Annu Symp Proc
, pp. 130-134
-
-
Chi, C.L.1
Street, W.N.2
Wolberg, W.H.3
-
3
-
-
56149108170
-
Application of artificial neural network-based survival analysis on two breast cancer datasets
-
AMIA Annual Symposium proceedings/AMIA Symposium AMIA Symposium
-
Chi CL, Street WN, Wolberg WH (2007). Application of artificial neural network-based survival analysis on two breast cancer datasets. AMIA Annual Symposium proceedings/AMIA Symposium AMIA Symposium, 130-4.
-
(2007)
, pp. 130-134
-
-
Chi, C.L.1
Street, W.N.2
Wolberg, W.H.3
-
4
-
-
33846883996
-
Artificial neural network: predicted vs observed survival in patients with colonic cancer
-
Dolgobrodov SG, Moore P, Marshall R, et al. (2007). Artificial neural network: predicted vs observed survival in patients with colonic cancer. Dis Colon Rectum, 50, 184-91.
-
(2007)
Dis Colon Rectum
, vol.50
, pp. 184-191
-
-
Dolgobrodov, S.G.1
Moore, P.2
Marshall, R.3
-
5
-
-
84867295504
-
A swarm optimized neural network system for classification of microcalcification in mammograms
-
Dheeba J, Selvi ST (2011). A swarm optimized neural network system for classification of microcalcification in mammograms. J Med Syst, 36, 3051-61.
-
(2011)
J Med Syst
, vol.36
, pp. 3051-3061
-
-
Dheeba, J.1
Selvi, S.T.2
-
6
-
-
57649201393
-
Continuous and discrete time survival analysis: neural network approaches
-
Eleuteri A, Aung MS, Taktak AF, Damato B, Lisboa PJ (2007). Continuous and discrete time survival analysis: neural network approaches. Conf Proc IEEE Eng Med Biol Soc, 2007, 5420-3.
-
(2007)
Conf Proc IEEE Eng Med Biol Soc
, vol.2007
, pp. 5420-5423
-
-
Eleuteri, A.1
Aung, M.S.2
Taktak, A.F.3
Damato, B.4
Lisboa, P.J.5
-
7
-
-
78650689459
-
Comparison of three adjuvant chemotherapy regimes using an extended log-logistic model in women with operable breast cancer
-
Faradmal J, Kazemnejad A, Khodabakhshi R, Gohari MR, Hajizadeh E (2010). Comparison of three adjuvant chemotherapy regimes using an extended log-logistic model in women with operable breast cancer. Asian Pac J Cancer Prev, 11, 353-8.
-
(2010)
Asian Pac J Cancer Prev
, vol.11
, pp. 353-358
-
-
Faradmal, J.1
Kazemnejad, A.2
Khodabakhshi, R.3
Gohari, M.R.4
Hajizadeh, E.5
-
8
-
-
80052632043
-
Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients
-
Giordano A, Giuliano M, De Laurentiis M, et al. (2011). Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients. Breast Cancer Res Treat, 129, 451-8.
-
(2011)
Breast Cancer Res Treat
, vol.129
, pp. 451-458
-
-
Giordano, A.1
Giuliano, M.2
de Laurentiis, M.3
-
9
-
-
84858022470
-
Use of an artificial neural network to determine prognostic factors in colorectal cancer patients
-
Gohari MR, Biglarian A, Bakhshi E, Pourhoseingholi MA (2011). Use of an artificial neural network to determine prognostic factors in colorectal cancer patients. Asian Pac J Cancer Prev, 12, 1469-72.
-
(2011)
Asian Pac J Cancer Prev
, vol.12
, pp. 1469-1472
-
-
Gohari, M.R.1
Biglarian, A.2
Bakhshi, E.3
Pourhoseingholi, M.A.4
-
10
-
-
84969418861
-
Comparison of artificial neural networks and cox regression models in prediction of kidney transplant survival
-
Hashemian AH, Beiranvand B, Rezaei M, Bardideh A, Zand- Karimi E. (2013). Comparison of artificial neural networks and cox regression models in prediction of kidney transplant survival. Int J Adv Biol Biom Res, 1, 1204-12.
-
(2013)
Int J Adv Biol Biom Res
, vol.1
, pp. 1204-1212
-
-
Hashemian, A.H.1
Beiranvand, B.2
Rezaei, M.3
Bardideh, A.4
Zand-Karimi, E.5
-
11
-
-
52949124120
-
A comparative study of survival models for breast cancer prognostication on microarray data: does a single gene beat them all?
-
Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G (2008). A comparative study of survival models for breast cancer prognostication on microarray data: does a single gene beat them all? Bioinformatics, 24, 2200-8.
-
(2008)
Bioinformatics
, vol.24
, pp. 2200-2208
-
-
Haibe-Kains, B.1
Desmedt, C.2
Sotiriou, C.3
Bontempi, G.4
-
12
-
-
79952232216
-
Global cancer statistics
-
Jemal A, Bray F, Center MM, et al. (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90.
-
(2011)
CA Cancer J Clin
, vol.61
, pp. 69-90
-
-
Jemal, A.1
Bray, F.2
Center, M.M.3
-
13
-
-
27944509655
-
Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks
-
Jerez JM, Franco L, Alba E, et al. (2005). Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks. Breast Cancer Res Tr, 94, 65-72.
-
(2005)
Breast Cancer Res Tr
, vol.94
, pp. 65-72
-
-
Jerez, J.M.1
Franco, L.2
Alba, E.3
-
14
-
-
84861934345
-
Comparison of survival predictions for rats with hemorrhagic shocks using an artificial neural network and support vector machine
-
Jang KH, Yoo TK, Choi JY, et al. (2011). Comparison of survival predictions for rats with hemorrhagic shocks using an artificial neural network and support vector machine. Conf Proc IEEE Eng Med Biol Soc, 2011, 91-4.
-
(2011)
Conf Proc IEEE Eng Med Biol Soc
, vol.2011
, pp. 91-94
-
-
Jang, K.H.1
Yoo, T.K.2
Choi, J.Y.3
-
16
-
-
84870043235
-
A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability
-
Kim SM, Han H, Park JM, et al. (2012). A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability. J Digit Imaging, 25, 599-606.
-
(2012)
J Digit Imaging
, vol.25
, pp. 599-606
-
-
Kim, S.M.1
Han, H.2
Park, J.M.3
-
17
-
-
34248647301
-
Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
-
Kurt I, Ture M, Kurum AT (2008). Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Systems with Applications, 34, 366-74.
-
(2008)
Expert Systems with Applications
, vol.34
, pp. 366-374
-
-
Kurt, I.1
Ture, M.2
Kurum, A.T.3
-
18
-
-
77953769694
-
Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes
-
Kazemnejad A, Batvandi Z, Faradmal J (2010). Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes. Eastern Mediterranean Health J, 16, 15-20.
-
(2010)
Eastern Mediterranean Health J
, vol.16
, pp. 15-20
-
-
Kazemnejad, A.1
Batvandi, Z.2
Faradmal, J.3
-
19
-
-
44349110097
-
Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach
-
Lancashire LJ, Rees RC, Ball GR (2008). Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach. Artif Intell Med, 43, 99-111.
-
(2008)
Artif Intell Med
, vol.43
, pp. 99-111
-
-
Lancashire, L.J.1
Rees, R.C.2
Ball, G.R.3
-
20
-
-
84867316536
-
Breast cancer classification based on advanced multi dimensional fuzzy neural network
-
Naghibi S, Teshnehlab M, Shoorehdeli MA (2011). Breast cancer classification based on advanced multi dimensional fuzzy neural network. J Med Syst, 36, 2713-20.
-
(2011)
J Med Syst
, vol.36
, pp. 2713-2720
-
-
Naghibi, S.1
Teshnehlab, M.2
Shoorehdeli, M.A.3
-
21
-
-
84905991866
-
-
National Cancer Institute
-
National Cancer Institute (2012). Cancer terms. URL: http:// training.seer.cancer.gov/disease/cancer/terms.html.
-
(2012)
Cancer terms
-
-
-
22
-
-
84862285756
-
Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey
-
Parsaeian M, Mohammad K, Mahmoudi M, Zeraati H (2012). Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey. Iranian J Publ Health, 41, 86-92.
-
(2012)
Iranian J Publ Health
, vol.41
, pp. 86-92
-
-
Parsaeian, M.1
Mohammad, K.2
Mahmoudi, M.3
Zeraati, H.4
-
23
-
-
0035530910
-
The lognormal distribution as a model for survival time in cancer, with an emphasis on prognostic factors
-
Royston P (2001). The lognormal distribution as a model for survival time in cancer, with an emphasis on prognostic factors. Stat Neerlandica, 55, 89-104.
-
(2001)
Stat Neerlandica
, vol.55
, pp. 89-104
-
-
Royston, P.1
-
24
-
-
1442350707
-
Non-linear survival analysis using neural networks
-
Ripley RM, Harris AL, Tarassenko L (2004). Non-linear survival analysis using neural networks. Stat Med, 23, 25-42.
-
(2004)
Stat Med
, vol.23
, pp. 25-42
-
-
Ripley, R.M.1
Harris, A.L.2
Tarassenko, L.3
-
25
-
-
77956926311
-
Use of an artificial neural network to predict head injury outcome
-
Rughani AI, Dumont TM, Lu Z, et al. (2010). Use of an artificial neural network to predict head injury outcome. J Neurosurg, 113, 585-90.
-
(2010)
J Neurosurg
, vol.113
, pp. 585-590
-
-
Rughani, A.I.1
Dumont, T.M.2
Lu, Z.3
-
26
-
-
79961135005
-
R: A Language and Environment for Statistical Computing
-
R Development Core Team Vienna, Austria
-
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Vienna, Austria.
-
(2011)
-
-
-
27
-
-
84871689557
-
Artificial neural network for prediction of distant metastasis in colorectal cancer
-
Biglarian A, Bakhshi E, Gohari MR, Khodabakhshi R (2012). Artificial neural network for prediction of distant metastasis in colorectal cancer. Asian Pac J Cancer Prev, 13, 927-30.
-
(2012)
Asian Pac J Cancer Prev
, vol.13
, pp. 927-930
-
-
Biglarian, A.1
Bakhshi, E.2
Gohari, M.R.3
Khodabakhshi, R.4
-
28
-
-
84860356620
-
Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery
-
Shi H-Y, Lee K-T, Lee H-H, et al. (2012) Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery. PLoS ONE, 7, 35781.
-
(2012)
PLoS ONE
, vol.7
, pp. 35781
-
-
Shi, H.-Y.1
Lee, K.-T.2
Lee, H.-H.3
-
29
-
-
78649767494
-
Determining factors that predict technique survival on peritoneal dialysis: application of regression and artificial neural network methods
-
Tangri N, Ansell D, Naimark D (2011). Determining factors that predict technique survival on peritoneal dialysis: application of regression and artificial neural network methods. Nephron Clin Pract, 118, 93-100.
-
(2011)
Nephron Clin Pract
, vol.118
, pp. 93-100
-
-
Tangri, N.1
Ansell, D.2
Naimark, D.3
-
30
-
-
34250736743
-
Evaluating prediction rules for t-year survivors with censored regression models
-
Uno H, Cai T, Tian L, Wei LJ (2007). Evaluating prediction rules for t-year survivors with censored regression models. J Am Stat Assoc, 102, 527-32.
-
(2007)
J Am Stat Assoc
, vol.102
, pp. 527-532
-
-
Uno, H.1
Cai, T.2
Tian, L.3
Wei, L.J.4
-
31
-
-
84905978806
-
-
WHO
-
WHO (2012). Who cancer. URL: http://www.who.int/ mediacentre/factsheets/fs297/en/.
-
(2012)
Who cancer
-
-
-
32
-
-
0034726204
-
Comparison of the performance of neural network methods and cox regression for censored survival data
-
Xiang A, Lapuerta P, Ryutov A, Buckley J, Azen S (2000). Comparison of the performance of neural network methods and cox regression for censored survival data. Comput Stat Data An, 34, 243-57.
-
(2000)
Comput Stat Data An
, vol.34
, pp. 243-257
-
-
Xiang, A.1
Lapuerta, P.2
Ryutov, A.3
Buckley, J.4
Azen, S.5
-
33
-
-
84905981311
-
Comparison between artificial neural network and cox regression model in predicting the survival rate of gastric cancer patients
-
Zhu L, Luo W, Su M, et al. (2013). Comparison between artificial neural network and cox regression model in predicting the survival rate of gastric cancer patients. Biomedical Reports, 1, 757-60.
-
(2013)
Biomedical Reports
, vol.1
, pp. 757-760
-
-
Zhu, L.1
Luo, W.2
Su, M.3
|