-
1
-
-
84958572571
-
An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region
-
1 Schweizer, N., et al. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region. J. Cell. Biol. 210 (2015), 695–704.
-
(2015)
J. Cell. Biol.
, vol.210
, pp. 695-704
-
-
Schweizer, N.1
-
2
-
-
84925285786
-
Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces
-
2 Barisic, M., et al. Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nat. Cell Biol. 16 (2014), 1249–1256.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1249-1256
-
-
Barisic, M.1
-
3
-
-
84921688760
-
Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways
-
3 Bancroft, J., et al. Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways. J. Cell Sci. 128 (2015), 171–184.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 171-184
-
-
Bancroft, J.1
-
4
-
-
80051985198
-
The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly
-
4 Magidson, V., et al. The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146 (2011), 555–567.
-
(2011)
Cell
, vol.146
, pp. 555-567
-
-
Magidson, V.1
-
5
-
-
84940609880
-
Adaptive changes in the kinetochore architecture facilitate proper spindle assembly
-
5 Magidson, V., et al. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly. Nat. Cell Biol. 17 (2015), 1134–1144.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1134-1144
-
-
Magidson, V.1
-
6
-
-
0022542941
-
Sites of microtubule assembly and disassembly in the mitotic spindle
-
6 Mitchison, T., et al. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45 (1986), 515–527.
-
(1986)
Cell
, vol.45
, pp. 515-527
-
-
Mitchison, T.1
-
7
-
-
77957870733
-
Tubulin depolymerization may be an ancient biological motor
-
7 McIntosh, J.R., et al. Tubulin depolymerization may be an ancient biological motor. J. Cell Sci. 123 (2010), 3425–3434.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3425-3434
-
-
McIntosh, J.R.1
-
8
-
-
84946031348
-
Building an integrated model of chromosome congression
-
8 Auckland, P., McAinsh, A.D., Building an integrated model of chromosome congression. J. Cell Sci. 128 (2015), 3363–3374.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 3363-3374
-
-
Auckland, P.1
McAinsh, A.D.2
-
9
-
-
34547867076
-
Kinetochore dynein generates a poleward pulling force to facilitate congression and full chromosome alignment
-
9 Li, Y., et al. Kinetochore dynein generates a poleward pulling force to facilitate congression and full chromosome alignment. Cell Res. 17 (2007), 701–712.
-
(2007)
Cell Res.
, vol.17
, pp. 701-712
-
-
Li, Y.1
-
10
-
-
0025098191
-
Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells
-
10 Rieder, C.L., Alexander, S.P., Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110 (1990), 81–95.
-
(1990)
J. Cell Biol.
, vol.110
, pp. 81-95
-
-
Rieder, C.L.1
Alexander, S.P.2
-
11
-
-
41149101176
-
Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin
-
11 Vorozhko, V.V., et al. Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin. Chromosoma 117 (2008), 169–179.
-
(2008)
Chromosoma
, vol.117
, pp. 169-179
-
-
Vorozhko, V.V.1
-
12
-
-
34249699586
-
Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint
-
12 Yang, Z., et al. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17 (2007), 973–980.
-
(2007)
Curr. Biol.
, vol.17
, pp. 973-980
-
-
Yang, Z.1
-
13
-
-
31144471300
-
Chromosomes can congress to the metaphase plate before biorientation
-
13 Kapoor, T.M., et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311 (2006), 388–391.
-
(2006)
Science
, vol.311
, pp. 388-391
-
-
Kapoor, T.M.1
-
14
-
-
0031468113
-
CENP-E function at kinetochores is essential for chromosome alignment
-
14 Schaar, B.T., et al. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139 (1997), 1373–1382.
-
(1997)
J. Cell Biol.
, vol.139
, pp. 1373-1382
-
-
Schaar, B.T.1
-
15
-
-
0030665077
-
CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment
-
15 Wood, K.W., et al. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91 (1997), 357–366.
-
(1997)
Cell
, vol.91
, pp. 357-366
-
-
Wood, K.W.1
-
16
-
-
0034682704
-
Xkid, a chromokinesin required for chromosome alignment on the metaphase plate
-
16 Antonio, C., et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102 (2000), 425–435.
-
(2000)
Cell
, vol.102
, pp. 425-435
-
-
Antonio, C.1
-
17
-
-
0034682707
-
The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement
-
17 Funabiki, H., Murray, A.W., The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102 (2000), 411–424.
-
(2000)
Cell
, vol.102
, pp. 411-424
-
-
Funabiki, H.1
Murray, A.W.2
-
18
-
-
84866362654
-
Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis
-
18 Wandke, C., et al. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J. Cell Biol. 198 (2012), 847–863.
-
(2012)
J. Cell Biol.
, vol.198
, pp. 847-863
-
-
Wandke, C.1
-
19
-
-
84924529724
-
Chromokinesin Kid and kinetochore kinesin CENP-E differentially support chromosome congression without end-on attachment to microtubules
-
19 Iemura, K., Tanaka, K., Chromokinesin Kid and kinetochore kinesin CENP-E differentially support chromosome congression without end-on attachment to microtubules. Nat. Commun., 6, 2015, 6447.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6447
-
-
Iemura, K.1
Tanaka, K.2
-
20
-
-
84873046642
-
Elevated polar ejection forces stabilize kinetochore-microtubule attachments
-
20 Cane, S., et al. Elevated polar ejection forces stabilize kinetochore-microtubule attachments. J. Cell Biol. 200 (2013), 203–218.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 203-218
-
-
Cane, S.1
-
21
-
-
84944683483
-
Polar ejection forces promote the conversion from lateral to end-on kinetochore-microtubule attachments on mono-oriented chromosomes
-
21 Drpic, D., et al. Polar ejection forces promote the conversion from lateral to end-on kinetochore-microtubule attachments on mono-oriented chromosomes. Cell Rep. 13 (2015), 460–469.
-
(2015)
Cell Rep.
, vol.13
, pp. 460-469
-
-
Drpic, D.1
-
22
-
-
79952107079
-
Sensing centromere tension: Aurora B and the regulation of kinetochore function
-
22 Lampson, M.A., Cheeseman, I.M., Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 21 (2011), 133–140.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 133-140
-
-
Lampson, M.A.1
Cheeseman, I.M.2
-
23
-
-
84937523740
-
Spatial regulation of kinetochore microtubule attachments by destabilization at spindle poles in meiosis I
-
23 Chmatal, L., et al. Spatial regulation of kinetochore microtubule attachments by destabilization at spindle poles in meiosis I. Curr. Biol. 25 (2015), 1835–1841.
-
(2015)
Curr. Biol.
, vol.25
, pp. 1835-1841
-
-
Chmatal, L.1
-
24
-
-
84937516391
-
Aurora A kinase contributes to a pole-based error correction pathway
-
24 Ye, A.A., et al. Aurora A kinase contributes to a pole-based error correction pathway. Curr. Biol. 25 (2015), 1842–1851.
-
(2015)
Curr. Biol.
, vol.25
, pp. 1842-1851
-
-
Ye, A.A.1
-
25
-
-
84959495261
-
Dynein prevents erroneous kinetochore-microtubule attachments in mitosis
-
25 Barisic, M., Maiato, H., Dynein prevents erroneous kinetochore-microtubule attachments in mitosis. Cell Cycle 14 (2015), 3356–3361.
-
(2015)
Cell Cycle
, vol.14
, pp. 3356-3361
-
-
Barisic, M.1
Maiato, H.2
-
26
-
-
77954740977
-
Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E
-
26 Kim, Y., et al. Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142 (2010), 444–455.
-
(2010)
Cell
, vol.142
, pp. 444-455
-
-
Kim, Y.1
-
27
-
-
67650087879
-
Chromosome congression in the absence of kinetochore fibres
-
27 Cai, S., et al. Chromosome congression in the absence of kinetochore fibres. Nat. Cell Biol. 11 (2009), 832–838.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 832-838
-
-
Cai, S.1
-
28
-
-
84873054101
-
Chromosomal gain promotes formation of a steep RanGTP gradient that drives mitosis in aneuploid cells
-
28 Hasegawa, K., et al. Chromosomal gain promotes formation of a steep RanGTP gradient that drives mitosis in aneuploid cells. J. Cell Biol. 200 (2013), 151–161.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 151-161
-
-
Hasegawa, K.1
-
29
-
-
84929340886
-
Mitosis. Microtubule detyrosination guides chromosomes during mitosis
-
29 Barisic, M., et al. Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science (New York, N.Y.). 348 (2015), 799–803.
-
(2015)
Science (New York, N.Y.).
, vol.348
, pp. 799-803
-
-
Barisic, M.1
-
30
-
-
0035839136
-
Translating the histone code
-
30 Jenuwein, T., Allis, C.D., Translating the histone code. Science 293 (2001), 1074–1080.
-
(2001)
Science
, vol.293
, pp. 1074-1080
-
-
Jenuwein, T.1
Allis, C.D.2
-
31
-
-
84906491034
-
The tubulin code: molecular components, readout mechanisms, and functions
-
31 Janke, C., The tubulin code: molecular components, readout mechanisms, and functions. J. Cell Biol. 206 (2014), 461–472.
-
(2014)
J. Cell Biol.
, vol.206
, pp. 461-472
-
-
Janke, C.1
-
32
-
-
34548830425
-
The tubulin code
-
32 Verhey, K.J., Gaertig, J., The tubulin code. Cell Cycle 6 (2007), 2152–2160.
-
(2007)
Cell Cycle
, vol.6
, pp. 2152-2160
-
-
Verhey, K.J.1
Gaertig, J.2
-
33
-
-
33644865003
-
Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1
-
33 Fourest-Lieuvin, A., et al. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell 17 (2006), 1041–1050.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 1041-1050
-
-
Fourest-Lieuvin, A.1
-
34
-
-
78149448622
-
Mutation of Ser172 in yeast beta tubulin induces defects in microtubule dynamics and cell division
-
34 Caudron, F., et al. Mutation of Ser172 in yeast beta tubulin induces defects in microtubule dynamics and cell division. PLoS One, 5, 2010, e13553.
-
(2010)
PLoS One
, vol.5
, pp. e13553
-
-
Caudron, F.1
-
35
-
-
0017577442
-
Release of tyrosine from tyrosinated tubulin Some common factors that affect this process and the assembly of tubulin
-
35 Hallak, M.E., et al. Release of tyrosine from tyrosinated tubulin Some common factors that affect this process and the assembly of tubulin. FEBS Lett. 73 (1977), 147–150.
-
(1977)
FEBS Lett.
, vol.73
, pp. 147-150
-
-
Hallak, M.E.1
-
36
-
-
0016760652
-
An enzyme tyrosylating alpha-tubulin and its role in microtubule assembly
-
36 Raybin, D., Flavin, M., An enzyme tyrosylating alpha-tubulin and its role in microtubule assembly. Biochem. Biophys. Res. Commun. 65 (1975), 1088–1095.
-
(1975)
Biochem. Biophys. Res. Commun.
, vol.65
, pp. 1088-1095
-
-
Raybin, D.1
Flavin, M.2
-
37
-
-
0021953936
-
Purification of brain tubulin-tyrosine ligase by biochemical and immunological methods
-
37 Schroder, H.C., et al. Purification of brain tubulin-tyrosine ligase by biochemical and immunological methods. J. Cell Biol. 100 (1985), 276–281.
-
(1985)
J. Cell Biol.
, vol.100
, pp. 276-281
-
-
Schroder, H.C.1
-
38
-
-
0027441409
-
Characterization of the tubulin-tyrosine ligase
-
38 Ersfeld, K., et al. Characterization of the tubulin-tyrosine ligase. J. Cell Biol. 120 (1993), 725–732.
-
(1993)
J. Cell Biol.
, vol.120
, pp. 725-732
-
-
Ersfeld, K.1
-
39
-
-
77956525850
-
MEC-17 is an alpha-tubulin acetyltransferase
-
39 Akella, J.S., et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 467 (2010), 218–222.
-
(2010)
Nature
, vol.467
, pp. 218-222
-
-
Akella, J.S.1
-
40
-
-
78650731392
-
The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation
-
40 Shida, T., et al. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 21517–21522.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 21517-21522
-
-
Shida, T.1
-
41
-
-
0037161744
-
HDAC6 is a microtubule-associated deacetylase
-
41 Hubbert, C., et al. HDAC6 is a microtubule-associated deacetylase. Nature 417 (2002), 455–458.
-
(2002)
Nature
, vol.417
, pp. 455-458
-
-
Hubbert, C.1
-
42
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
42 North, B.J., et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11 (2003), 437–444.
-
(2003)
Mol. Cell
, vol.11
, pp. 437-444
-
-
North, B.J.1
-
43
-
-
0032499669
-
Tubulin polyglutamylase: partial purification and enzymatic properties
-
43 Regnard, C., et al. Tubulin polyglutamylase: partial purification and enzymatic properties. Biochemistry 37 (1998), 8395–8404.
-
(1998)
Biochemistry
, vol.37
, pp. 8395-8404
-
-
Regnard, C.1
-
44
-
-
20544457358
-
Tubulin polyglutamylase enzymes are members of the TTL domain protein family
-
44 Janke, C., et al. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science (New York, N.Y.). 308 (2005), 1758–1762.
-
(2005)
Science (New York, N.Y.).
, vol.308
, pp. 1758-1762
-
-
Janke, C.1
-
45
-
-
34247620196
-
A targeted multienzyme mechanism for selective microtubule polyglutamylation
-
45 van Dijk, J., et al. A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell 26 (2007), 437–448.
-
(2007)
Mol. Cell
, vol.26
, pp. 437-448
-
-
van Dijk, J.1
-
46
-
-
33750074428
-
TTLL7 is a mammalian beta-tubulin polyglutamylase required for growth of MAP2-positive neurites
-
46 Ikegami, K., et al. TTLL7 is a mammalian beta-tubulin polyglutamylase required for growth of MAP2-positive neurites. J. Biol. Chem. 281 (2006), 30707–30716.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 30707-30716
-
-
Ikegami, K.1
-
47
-
-
77954904162
-
Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs)
-
47 Kimura, Y., et al. Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J. Biol. Chem. 285 (2010), 22936–22941.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22936-22941
-
-
Kimura, Y.1
-
48
-
-
78149486157
-
A family of protein-deglutamylating enzymes associated with neurodegeneration
-
48 Rogowski, K., et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143 (2010), 564–578.
-
(2010)
Cell
, vol.143
, pp. 564-578
-
-
Rogowski, K.1
-
49
-
-
84923223445
-
The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids
-
49 Tort, O., et al. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol. Biol. Cell 25 (2014), 3017–3027.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3017-3027
-
-
Tort, O.1
-
50
-
-
0031929183
-
Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells
-
50 Bobinnec, Y., et al. Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil. Cytoskeleton 39 (1998), 223–232.
-
(1998)
Cell Motil. Cytoskeleton
, vol.39
, pp. 223-232
-
-
Bobinnec, Y.1
-
51
-
-
0022501223
-
Distribution of tyrosinated and nontyrosinated alpha-tubulin during mitosis
-
51 Gundersen, G.G., Bulinski, J.C., Distribution of tyrosinated and nontyrosinated alpha-tubulin during mitosis. J. Cell Biol. 102 (1986), 1118–1126.
-
(1986)
J. Cell Biol.
, vol.102
, pp. 1118-1126
-
-
Gundersen, G.G.1
Bulinski, J.C.2
-
52
-
-
0021752265
-
Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo
-
52 Gundersen, G.G., et al. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell 38 (1984), 779–789.
-
(1984)
Cell
, vol.38
, pp. 779-789
-
-
Gundersen, G.G.1
-
53
-
-
0030904701
-
Effects of nanomolar taxol on crane-fly spermatocyte spindles indicate that acetylation of kinetochore microtubules can be used as a marker of poleward tubulin flux
-
53 Wilson, P.J., Forer, A., Effects of nanomolar taxol on crane-fly spermatocyte spindles indicate that acetylation of kinetochore microtubules can be used as a marker of poleward tubulin flux. Cell Motil. Cytoskeleton 37 (1997), 20–32.
-
(1997)
Cell Motil. Cytoskeleton
, vol.37
, pp. 20-32
-
-
Wilson, P.J.1
Forer, A.2
-
54
-
-
0023877365
-
Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level
-
54 Khawaja, S., et al. Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J. Cell Biol. 106 (1988), 141–149.
-
(1988)
J. Cell Biol.
, vol.106
, pp. 141-149
-
-
Khawaja, S.1
-
55
-
-
0025294639
-
Detyrosination of alpha tubulin does not stabilize microtubules in vivo
-
55 Webster, D.R., et al. Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J. Cell Biol. 111 (1990), 113–122.
-
(1990)
J. Cell Biol.
, vol.111
, pp. 113-122
-
-
Webster, D.R.1
-
56
-
-
0022452231
-
The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules
-
56 Maruta, H., et al. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules. J. Cell Biol. 103 (1986), 571–579.
-
(1986)
J. Cell Biol.
, vol.103
, pp. 571-579
-
-
Maruta, H.1
-
57
-
-
0024583552
-
Complete separation of tyrosinated, detyrosinated, and nontyrosinatable brain tubulin subpopulations using affinity chromatography
-
57 Paturle, L., et al. Complete separation of tyrosinated, detyrosinated, and nontyrosinatable brain tubulin subpopulations using affinity chromatography. Biochemistry 28 (1989), 2698–2704.
-
(1989)
Biochemistry
, vol.28
, pp. 2698-2704
-
-
Paturle, L.1
-
58
-
-
0023293040
-
Microtubules containing acetylated alpha-tubulin in mammalian cells in culture
-
58 Piperno, G., et al. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 104 (1987), 289–302.
-
(1987)
J. Cell Biol.
, vol.104
, pp. 289-302
-
-
Piperno, G.1
-
59
-
-
76649143069
-
Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons
-
59 Hammond, J.W., et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 21 (2010), 572–583.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 572-583
-
-
Hammond, J.W.1
-
60
-
-
84874709998
-
Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation activity
-
60 Kalebic, N., et al. Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation activity. Mol Cell Biol 33 (2013), 1114–1123.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 1114-1123
-
-
Kalebic, N.1
-
61
-
-
70350359874
-
Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6
-
61 Zilberman, Y., et al. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J. Cell Sci. 122 (2009), 3531–3541.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 3531-3541
-
-
Zilberman, Y.1
-
62
-
-
67649580185
-
Motor-dependent microtubule disassembly driven by tubulin tyrosination
-
62 Peris, L., et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185 (2009), 1159–1166.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 1159-1166
-
-
Peris, L.1
-
63
-
-
84897536393
-
Regulation of microtubule motors by tubulin isotypes and post-translational modifications
-
63 Sirajuddin, M., et al. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16 (2014), 335–344.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 335-344
-
-
Sirajuddin, M.1
-
64
-
-
77953598298
-
Tubulin polyglutamylation stimulates spastin-mediated microtubule severing
-
64 Lacroix, B., et al. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 189 (2010), 945–954.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 945-954
-
-
Lacroix, B.1
-
65
-
-
84959422753
-
Graded control of microtubule severing by tubulin glutamylation
-
65 Valenstein, M.L., Roll-Mecak, A., Graded control of microtubule severing by tubulin glutamylation. Cell 164 (2016), 911–921.
-
(2016)
Cell
, vol.164
, pp. 911-921
-
-
Valenstein, M.L.1
Roll-Mecak, A.2
-
66
-
-
67349200776
-
Tubulin tyrosination navigates the kinesin-1 motor domain to axons
-
66 Konishi, Y., Setou, M., Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12 (2009), 559–567.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 559-567
-
-
Konishi, Y.1
Setou, M.2
-
67
-
-
66649098395
-
Synaptic activation modifies microtubules underlying transport of postsynaptic cargo
-
67 Maas, C., et al. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 8731–8736.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 8731-8736
-
-
Maas, C.1
-
68
-
-
33750618516
-
Microtubule acetylation promotes kinesin-1 binding and transport
-
68 Reed, N.A., et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16 (2006), 2166–2172.
-
(2006)
Curr. Biol.
, vol.16
, pp. 2166-2172
-
-
Reed, N.A.1
-
69
-
-
84902983688
-
Effects of alpha-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system
-
69 Kaul, N., et al. Effects of alpha-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys. J. 106 (2014), 2636–2643.
-
(2014)
Biophys. J.
, vol.106
, pp. 2636-2643
-
-
Kaul, N.1
-
70
-
-
84868146124
-
Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules
-
70 Soppina, V., et al. Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One, 7, 2012, e48204.
-
(2012)
PLoS One
, vol.7
, pp. e48204
-
-
Soppina, V.1
-
71
-
-
84902106884
-
Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase
-
71 Szyk, A., et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 157 (2014), 1405–1415.
-
(2014)
Cell
, vol.157
, pp. 1405-1415
-
-
Szyk, A.1
-
72
-
-
84883659465
-
Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-kappaB inhibition
-
72 Whipple, R.A., et al. Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-kappaB inhibition. Breast Cancer Res., 15, 2013, R83.
-
(2013)
Breast Cancer Res.
, vol.15
, pp. R83
-
-
Whipple, R.A.1
-
73
-
-
34248205757
-
Parthenolide inhibits tubulin carboxypeptidase activity
-
73 Fonrose, X., et al. Parthenolide inhibits tubulin carboxypeptidase activity. Cancer Res. 67 (2007), 3371–3378.
-
(2007)
Cancer Res.
, vol.67
, pp. 3371-3378
-
-
Fonrose, X.1
-
74
-
-
0034079578
-
The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity
-
74 Wang, Z., Sheetz, M.P., The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys. J. 78 (2000), 1955–1964.
-
(2000)
Biophys. J.
, vol.78
, pp. 1955-1964
-
-
Wang, Z.1
Sheetz, M.P.2
-
75
-
-
84904381304
-
Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes
-
75 McKenney, R.J., et al. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science (New York, N.Y.). 345 (2014), 337–341.
-
(2014)
Science (New York, N.Y.).
, vol.345
, pp. 337-341
-
-
McKenney, R.J.1
-
76
-
-
84937157478
-
The motility of axonemal dynein is regulated by the tubulin code
-
76 Alper, J.D., et al. The motility of axonemal dynein is regulated by the tubulin code. Biophys. J. 107 (2014), 2872–2880.
-
(2014)
Biophys. J.
, vol.107
, pp. 2872-2880
-
-
Alper, J.D.1
-
77
-
-
77649098302
-
Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins
-
77 Kubo, T., et al. Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins. Curr. Biol. 20 (2010), 441–445.
-
(2010)
Curr. Biol.
, vol.20
, pp. 441-445
-
-
Kubo, T.1
-
78
-
-
33748557490
-
Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends
-
78 Peris, L., et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174 (2006), 839–849.
-
(2006)
J. Cell Biol.
, vol.174
, pp. 839-849
-
-
Peris, L.1
-
79
-
-
0032992466
-
Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury
-
79 Eiserich, J.P., et al. Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc. Natl. Acad. Sci. U.S.A. 96 (1999), 6365–6370.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 6365-6370
-
-
Eiserich, J.P.1
-
80
-
-
84960870281
-
Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility
-
80 McKenney, R.J., et al. Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J., 2016.
-
(2016)
EMBO J.
-
-
McKenney, R.J.1
-
81
-
-
84959909204
-
alpha-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons
-
81 Nirschl, J.J., et al. alpha-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14 (2016), 2637–2652.
-
(2016)
Cell Rep.
, vol.14
, pp. 2637-2652
-
-
Nirschl, J.J.1
-
82
-
-
20344379695
-
A vital role of tubulin-tyrosine-ligase for neuronal organization
-
82 Erck, C., et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 7853–7858.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 7853-7858
-
-
Erck, C.1
-
83
-
-
84891620677
-
alphaTAT1 is the major alpha-tubulin acetyltransferase in mice
-
83 Kalebic, N., et al. alphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat. Commun., 4, 2013, 1962.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1962
-
-
Kalebic, N.1
-
84
-
-
84884253169
-
Tubulin glycylases and glutamylases have distinct functions in stabilization and motility of ependymal cilia
-
84 Bosch Grau, M., et al. Tubulin glycylases and glutamylases have distinct functions in stabilization and motility of ependymal cilia. J. Cell Biol. 202 (2013), 441–451.
-
(2013)
J. Cell Biol.
, vol.202
, pp. 441-451
-
-
Bosch Grau, M.1
-
85
-
-
84908083025
-
Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon
-
85 Rocha, C., et al. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 33 (2014), 2247–2260.
-
(2014)
EMBO J.
, vol.33
, pp. 2247-2260
-
-
Rocha, C.1
-
86
-
-
84896379372
-
Generation of differentially modified microtubules using in vitro enzymatic approaches
-
86 Vemu, A., et al. Generation of differentially modified microtubules using in vitro enzymatic approaches. Methods Enzymol. 540 (2014), 149–166.
-
(2014)
Methods Enzymol.
, vol.540
, pp. 149-166
-
-
Vemu, A.1
-
87
-
-
84938791590
-
Proteomic profiling and functional characterization of multiple post-translational modifications of tubulin
-
87 Liu, N., et al. Proteomic profiling and functional characterization of multiple post-translational modifications of tubulin. J. Proteome Res. 14 (2015), 3292–3304.
-
(2015)
J. Proteome Res.
, vol.14
, pp. 3292-3304
-
-
Liu, N.1
-
88
-
-
0031906885
-
Suppression of tubulin tyrosine ligase during tumor growth
-
88 Lafanechere, L., et al. Suppression of tubulin tyrosine ligase during tumor growth. J. Cell Sci. 111:Pt 2 (1998), 171–181.
-
(1998)
J. Cell Sci.
, vol.111
, pp. 171-181
-
-
Lafanechere, L.1
-
89
-
-
0035393707
-
Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis
-
89 Mialhe, A., et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 61 (2001), 5024–5027.
-
(2001)
Cancer Res.
, vol.61
, pp. 5024-5027
-
-
Mialhe, A.1
-
90
-
-
84867398827
-
ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion
-
90 Castro-Castro, A., et al. ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion. Eur. J. Cell Biol. 91 (2012), 950–960.
-
(2012)
Eur. J. Cell Biol.
, vol.91
, pp. 950-960
-
-
Castro-Castro, A.1
-
91
-
-
77952837489
-
Involvement of the tubulin tyrosine ligase-like family member 4 polyglutamylase in PELP1 polyglutamylation and chromatin remodeling in pancreatic cancer cells
-
91 Kashiwaya, K., et al. Involvement of the tubulin tyrosine ligase-like family member 4 polyglutamylase in PELP1 polyglutamylation and chromatin remodeling in pancreatic cancer cells. Cancer Res. 70 (2010), 4024–4033.
-
(2010)
Cancer Res.
, vol.70
, pp. 4024-4033
-
-
Kashiwaya, K.1
-
92
-
-
84946887824
-
Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes
-
92 Froidevaux-Klipfel, L., et al. Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes. Oncotarget 6 (2015), 36063–36080.
-
(2015)
Oncotarget
, vol.6
, pp. 36063-36080
-
-
Froidevaux-Klipfel, L.1
-
93
-
-
77957967796
-
Differential expression of glu-tubulin in relation to mammary gland disease
-
93 Kuroda, H., et al. Differential expression of glu-tubulin in relation to mammary gland disease. Virchows Arch. 457 (2010), 477–482.
-
(2010)
Virchows Arch.
, vol.457
, pp. 477-482
-
-
Kuroda, H.1
-
94
-
-
33744901133
-
Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications
-
94 Soucek, K., et al. Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. Prostate 66 (2006), 954–965.
-
(2006)
Prostate
, vol.66
, pp. 954-965
-
-
Soucek, K.1
-
95
-
-
78049502208
-
Tubulin tyrosine ligase like 12 links to prostate cancer through tubulin posttranslational modification and chromosome ploidy
-
95 Wasylyk, C., et al. Tubulin tyrosine ligase like 12 links to prostate cancer through tubulin posttranslational modification and chromosome ploidy. Int. J. Cancer 127 (2010), 2542–2553.
-
(2010)
Int. J. Cancer
, vol.127
, pp. 2542-2553
-
-
Wasylyk, C.1
-
96
-
-
6344255193
-
Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis
-
96 Kato, C., et al. Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int. J. Cancer 112 (2004), 365–375.
-
(2004)
Int. J. Cancer
, vol.112
, pp. 365-375
-
-
Kato, C.1
-
97
-
-
78049253922
-
Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement
-
97 Whipple, R.A., et al. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res. 70 (2010), 8127–8137.
-
(2010)
Cancer Res.
, vol.70
, pp. 8127-8137
-
-
Whipple, R.A.1
-
98
-
-
38349097870
-
Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin
-
98 Roll-Mecak, A., Vale, R.D., Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451 (2008), 363–367.
-
(2008)
Nature
, vol.451
, pp. 363-367
-
-
Roll-Mecak, A.1
Vale, R.D.2
|