메뉴 건너뛰기




Volumn 3, Issue 4, 2015, Pages 230-237

A supervised learning process to validate online disease reports for use in predictive models

Author keywords

big data analytics; data acquisition and cleaning; machine learning; structured data

Indexed keywords


EID: 84991753476     PISSN: 21676461     EISSN: 2167647X     Source Type: Journal    
DOI: 10.1089/big.2015.0019     Document Type: Article
Times cited : (8)

References (22)
  • 1
    • 84876804736 scopus 로고    scopus 로고
    • The global distribution, and burden of dengue
    • Bhatt S, Gething PW, Brady OJ, et al. The global distribution, and burden of dengue. Nature. 2013; 496: 504-507.
    • (2013) Nature , vol.496 , pp. 504-507
    • Bhatt, S.1    Gething, P.W.2    Brady, O.J.3
  • 2
    • 84864234723 scopus 로고    scopus 로고
    • Funding for malaria control 2006-2010 a comprehensive global assessment
    • Pigott DM, Atun R, Moyes CL, et al. Funding for malaria control 2006-2010: a comprehensive global assessment. Malar J. 2012; 11: 246.
    • (2012) Malar J , vol.11 , pp. 246
    • Pigott, D.M.1    Atun, R.2    Moyes, C.L.3
  • 3
    • 84918559229 scopus 로고    scopus 로고
    • Mapping the zoonotic niche of Ebola virus disease in Africa
    • Pigott DM, Golding N, Mylne A, et al. Mapping the zoonotic niche of Ebola virus disease in Africa. eLife. 2014; 3: e04395.
    • (2014) ELife , vol.3 , pp. e04395
    • Pigott, D.M.1    Golding, N.2    Mylne, A.3
  • 4
    • 84878145468 scopus 로고    scopus 로고
    • Providing open access data online to advance malaria research, and control
    • Moyes CL, Temperley WH, Henry AJ, et al. Providing open access data online to advance malaria research, and control. Malar J. 2013; 12: 161.
    • (2013) Malar J , vol.12 , pp. 161
    • Moyes, C.L.1    Temperley, W.H.2    Henry, A.J.3
  • 5
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: Global infectious disease monitoring through automated classification, and visualization of internet media reports
    • Freifeld CC, Mandl KD, Ras BY, et al. HealthMap: global infectious disease monitoring through automated classification, and visualization of internet media reports. J Am Med Inform Assoc. 2008; 15: 150-157.
    • (2008) J Am Med Inform Assoc , vol.15 , pp. 150-157
    • Freifeld, C.C.1    Mandl, K.D.2    Ras, B.Y.3
  • 6
    • 84991752167 scopus 로고    scopus 로고
    • Available online at last accessed August 13, 2015
    • HealthMap Disease Outbreak Data Resource. 2015. Available online at www.healthmap.org (last accessed August 13, 2015
    • (2015) HealthMap Disease Outbreak Data Resource
  • 7
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008; 77: 802-813.
    • (2008) J Anim Ecol , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 8
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • Gama J, Brazdil P. Cascade generalization. Mach Learn. 2000; 41: 315-343.
    • (2000) Mach Learn , vol.41 , pp. 315-343
    • Gama, J.1    Brazdil, P.2
  • 9
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L. Stacked regressions. Mach Learn. 1996; 24: 49-64.
    • (1996) Mach Learn , vol.24 , pp. 49-64
    • Breiman, L.1
  • 10
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • Chandra A, Yao X. Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing. 2006; 69: 686-700.
    • (2006) Neurocomputing , vol.69 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 12
    • 0032628293 scopus 로고    scopus 로고
    • Evaluating machine learning models for engineering problems
    • Reich Y, Barai SV. Evaluating machine learning models for engineering problems. Artif Intell Eng. 1999; 13: 257-272.
    • (1999) Artif Intell Eng , vol.13 , pp. 257-272
    • Reich, Y.1    Barai, S.V.2
  • 13
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc. 1998; 2: 121-167.
    • (1998) Data Min Knowl Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 14
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression, and artificial neural network classification models: A methodology review
    • Dreiseitl S, Ohno-Machado L. Logistic regression, and artificial neural network classification models: a methodology review. J Biomed Inform. 2002; 35: 352-359.
    • (2002) J Biomed Inform , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 15
    • 84893662789 scopus 로고    scopus 로고
    • Review, and performance comparison of SVM-, and ELM-based classifiers
    • Chorowski J, Wang J, Zurada JM. Review, and performance comparison of SVM-, and ELM-based classifiers. Neurocomputing. 2014; 128: 507-516.
    • (2014) Neurocomputing , vol.128 , pp. 507-516
    • Chorowski, J.1    Wang, J.2    Zurada, J.M.3
  • 16
    • 84903642315 scopus 로고    scopus 로고
    • Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature
    • Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014; 7: 1247-1250.
    • (2014) Geosci Model Dev , vol.7 , pp. 1247-1250
    • Chai, T.1    Draxler, R.R.2
  • 18
    • 33646107181 scopus 로고    scopus 로고
    • Learning from imbalanced data in surveillance of nosocomial infection
    • Cohen G, Hilario M, Sax H, et al. Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med. 2006; 37: 7-18.
    • (2006) Artif Intell Med , vol.37 , pp. 7-18
    • Cohen, G.1    Hilario, M.2    Sax, H.3
  • 19
    • 33947281129 scopus 로고    scopus 로고
    • Hedging predictions in machine learning-The second computer journal lecture
    • Gammerman A, Vovk V. Hedging predictions in machine learning-The second computer journal lecture. Comput J. 2007; 50: 151-163.
    • (2007) Comput J , vol.50 , pp. 151-163
    • Gammerman, A.1    Vovk, V.2
  • 20
    • 33947245624 scopus 로고    scopus 로고
    • Rejoinder-hedging predictions in machine learning
    • Gammerman A, Vovk V. Rejoinder-hedging predictions in machine learning. Compu J. 2007; 50: 173-177.
    • (2007) Compu J , vol.50 , pp. 173-177
    • Gammerman, A.1    Vovk, V.2
  • 21
    • 84958762492 scopus 로고    scopus 로고
    • Enhancing disease surveillance with novel data streams: Challenges, and opportunities
    • Althouse B, Scarpino S, Meyers L, et al. Enhancing disease surveillance with novel data streams: challenges, and opportunities. EPJ Data Sci. 2015; 4: 17.
    • (2015) EPJ Data Sci , vol.4 , pp. 17
    • Althouse, B.1    Scarpino, S.2    Meyers, L.3
  • 22
    • 80052395153 scopus 로고    scopus 로고
    • Prediction of dengue incidence using search query surveillance
    • Althouse BM, Ng YY, Cummings DAT. Prediction of dengue incidence using search query surveillance. PLoS Negl Trop Dis. 2011; 5: e1258.
    • (2011) PLoS Negl Trop Dis , vol.5 , pp. e1258
    • Althouse, B.M.1    Ng, Y.Y.2    Cummings, D.A.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.