메뉴 건너뛰기




Volumn 4, Issue 1, 2015, Pages 1-8

Enhancing disease surveillance with novel data streams: challenges and opportunities

(36)  Althouse, Benjamin M a   Scarpino, Samuel V a   Meyers, Lauren Ancel a,b   Ayers, John W c   Bargsten, Marisa d   Baumbach, Joan d   Brownstein, John S e,f,g   Castro, Lauren h   Clapham, Hannah i   Cummings, Derek AT i   Del Valle, Sara h   Eubank, Stephen j   Fairchild, Geoffrey h   Finelli, Lyn k   Generous, Nicholas h   George, Dylan l   Harper, David R m   Hébert Dufresne, Laurent a   Johansson, Michael A n   Konty, Kevin o   more..


Author keywords

digital surveillance; disease surveillance; novel data streams

Indexed keywords

DATA COMMUNICATION SYSTEMS; EPIDEMIOLOGY; HEALTH; PUBLIC HEALTH; WORLD WIDE WEB;

EID: 84958762492     PISSN: None     EISSN: 21931127     Source Type: Journal    
DOI: 10.1140/epjds/s13688-015-0054-0     Document Type: Article
Times cited : (122)

References (36)
  • 3
    • 84867481070 scopus 로고    scopus 로고
    • Applying a new model for sharing population health data to national syndromic influenza surveillance: DiSTRIBuTE project proof of concept, 2006 to 2009
    • Olson DR, Paladini M, Lober WB, Buckeridge DL, ISDS Distribute Working Group (2011) Applying a new model for sharing population health data to national syndromic influenza surveillance: DiSTRIBuTE project proof of concept, 2006 to 2009. PLoS Curr 3:RRN1251
    • (2011) PLoS Curr , vol.3
    • Olson, D.R.1    Paladini, M.2    Lober, W.B.3    Buckeridge, D.L.4    ISDS Distribute Working Group5
  • 6
    • 84892509071 scopus 로고    scopus 로고
    • Internet-based surveillance systems for monitoring emerging infectious diseases
    • Milinovich GJ, Williams GM, Clements AC, Hu W (2014) Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis 14(2):160-168
    • (2014) Lancet Infect Dis , vol.14 , Issue.2 , pp. 160-168
    • Milinovich, G.J.1    Williams, G.M.2    Clements, A.C.3    Hu, W.4
  • 7
    • 78649725192 scopus 로고    scopus 로고
    • Pandemics in the age of Twitter: content analysis of tweets during the 2009 H1N1 outbreak
    • Chew C, Eysenbach G (2010) Pandemics in the age of Twitter: content analysis of tweets during the 2009 H1N1 outbreak. PLoS ONE 5(11):e14118
    • (2010) PLoS ONE , vol.5 , Issue.11
    • Chew, C.1    Eysenbach, G.2
  • 8
    • 84891941337 scopus 로고    scopus 로고
    • National and local influenza surveillance through Twitter: an analysis of the 2012-2013 influenza epidemic
    • Broniatowski DA, Paul MJ, Dredze M (2013) National and local influenza surveillance through Twitter: an analysis of the 2012-2013 influenza epidemic. PLoS ONE 8(12):e83672
    • (2013) PLoS ONE , vol.8 , Issue.12
    • Broniatowski, D.A.1    Paul, M.J.2    Dredze, M.3
  • 9
    • 84901331477 scopus 로고    scopus 로고
    • Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
    • McIver DJ, Brownstein JS (2014) Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput Biol 10(4):e1003581
    • (2014) PLoS Comput Biol , vol.10 , Issue.4
    • McIver, D.J.1    Brownstein, J.S.2
  • 10
    • 84958802878 scopus 로고    scopus 로고
    • Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R (2014) Global disease monitoring and forecasting with Wikipedia
    • Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R (2014) Global disease monitoring and forecasting with Wikipedia. arXiv:1405.3612
  • 11
    • 84893582468 scopus 로고    scopus 로고
    • Guess who’s not coming to dinner? Evaluating online restaurant reservations for disease surveillance
    • Nsoesie EO, Buckeridge DL, Brownstein JS (2014) Guess who’s not coming to dinner? Evaluating online restaurant reservations for disease surveillance. J Med Internet Res 16(1):e22
    • (2014) J Med Internet Res , vol.16 , Issue.1
    • Nsoesie, E.O.1    Buckeridge, D.L.2    Brownstein, J.S.3
  • 13
    • 25444510395 scopus 로고    scopus 로고
    • Monitoring over-the-counter medication sales for early detection of disease outbreaks - New York City
    • Das D, Metzger K, Heffernan R, Balter S, Weiss D, Mostashari F et al. (2005) Monitoring over-the-counter medication sales for early detection of disease outbreaks - New York City. Morb Mort Wkly Rep 54(Suppl):41-46
    • (2005) Morb Mort Wkly Rep , vol.54 , pp. 41-46
    • Das, D.1    Metzger, K.2    Heffernan, R.3    Balter, S.4    Weiss, D.5    Mostashari, F.6
  • 14
    • 84865598975 scopus 로고    scopus 로고
    • Comparison: flu prescription sales data from a retail pharmacy in the US with Google flu trends and US ILINet (CDC) data as flu activity indicator
    • Patwardhan A, Bilkovski R (2012) Comparison: flu prescription sales data from a retail pharmacy in the US with Google flu trends and US ILINet (CDC) data as flu activity indicator. PLoS ONE 7(8):e43611
    • (2012) PLoS ONE , vol.7 , Issue.8
    • Patwardhan, A.1    Bilkovski, R.2
  • 15
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports
    • Freifeld CC, Mandl KD, Reis BY, Brownstein JS (2008) HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J Am Med Inform Assoc 15:150-157
    • (2008) J Am Med Inform Assoc , vol.15 , pp. 150-157
    • Freifeld, C.C.1    Mandl, K.D.2    Reis, B.Y.3    Brownstein, J.S.4
  • 18
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales
    • Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L (2013) Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol 9:e1003256
    • (2013) PLoS Comput Biol , vol.9
    • Olson, D.R.1    Konty, K.J.2    Paladini, M.3    Viboud, C.4    Simonsen, L.5
  • 19
    • 84896056107 scopus 로고    scopus 로고
    • The parable of Google flu: traps in big data analysis
    • Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google flu: traps in big data analysis. Science 343(6176):1203-1205
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 20
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google flu trends?
    • Santillana M, Zhang DW, Althouse BM, Ayers JW (2014) What can digital disease detection learn from (an external revision to) Google flu trends? Am J Prev Med 47(3):341-347
    • (2014) Am J Prev Med , vol.47 , Issue.3 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 23
    • 84861156434 scopus 로고    scopus 로고
    • Optimizing provider recruitment for influenza surveillance networks
    • Scarpino SV, Dimitrov NB, Meyers LA (2012) Optimizing provider recruitment for influenza surveillance networks. PLoS Comput Biol 8(4):e1002472
    • (2012) PLoS Comput Biol , vol.8 , Issue.4
    • Scarpino, S.V.1    Dimitrov, N.B.2    Meyers, L.A.3
  • 24
    • 84898767960 scopus 로고    scopus 로고
    • Could behavioral medicine lead the web data revolution?
    • Ayers JW, Althouse BM, Dredze M (2014) Could behavioral medicine lead the web data revolution? JAMA 311(14):1399-1400
    • (2014) JAMA , vol.311 , Issue.14 , pp. 1399-1400
    • Ayers, J.W.1    Althouse, B.M.2    Dredze, M.3
  • 27
    • 84898603350 scopus 로고    scopus 로고
    • Digital detection for tobacco control: online reactions to the United States
    • Ayers JW, Althouse BM, Ribisl KM, Emery S (2009) Digital detection for tobacco control: online reactions to the United States. Nicotine Tob Res. doi:10.1093/ntr/ntt186
    • (2009) Nicotine Tob Res
    • Ayers, J.W.1    Althouse, B.M.2    Ribisl, K.M.3    Emery, S.4
  • 28
    • 79952761050 scopus 로고    scopus 로고
    • Using search query surveillance to monitor tax avoidance and smoking cessation following the United States’ 2009 “SCHIP” cigarette tax increase
    • Ayers JW, Ribisl K, Brownstein JS (2011) Using search query surveillance to monitor tax avoidance and smoking cessation following the United States’ 2009 “SCHIP” cigarette tax increase. PLoS ONE 6:e16777
    • (2011) PLoS ONE , vol.6
    • Ayers, J.W.1    Ribisl, K.2    Brownstein, J.S.3
  • 29
    • 84890167593 scopus 로고    scopus 로고
    • Do celebrity cancer diagnoses promote primary cancer prevention?
    • Ayers JW, Althouse BM, Noar SM, Cohen JE (2014) Do celebrity cancer diagnoses promote primary cancer prevention? Prev Med 58:81-84
    • (2014) Prev Med , vol.58 , pp. 81-84
    • Ayers, J.W.1    Althouse, B.M.2    Noar, S.M.3    Cohen, J.E.4
  • 30
    • 84892449020 scopus 로고    scopus 로고
    • Using digital surveillance to examine the impact of public figure pancreatic cancer announcements on media and search query outcomes
    • Noar SM, Ribisl KM, Althouse BM, Willoughby JF, Ayers JW (2013) Using digital surveillance to examine the impact of public figure pancreatic cancer announcements on media and search query outcomes. J Natl Cancer Inst Monographs 2013(47):188-194
    • (2013) J Natl Cancer Inst Monographs , vol.2013 , Issue.47 , pp. 188-194
    • Noar, S.M.1    Ribisl, K.M.2    Althouse, B.M.3    Willoughby, J.F.4    Ayers, J.W.5
  • 32
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • 2
    • Kohavi R et al. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI’95, vol 2, pp 1137-1145
    • (1995) IJCAI’95 , pp. 1137-1145
    • Kohavi, R.1
  • 36
    • 84958802880 scopus 로고    scopus 로고
    • Wolpert DH (2012) What the no free lunch theorems really mean; how to improve search algorithms. Working paper, Santa Fe Institute
    • Wolpert DH (2012) What the no free lunch theorems really mean; how to improve search algorithms. Working paper, Santa Fe Institute


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.