메뉴 건너뛰기




Volumn 7, Issue 19, 2016, Pages 3752-3759

Ab Initio-Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHENE; MOLECULAR DYNAMICS; NANOSTRUCTURES; TEMPERATURE DISTRIBUTION;

EID: 84990045013     PISSN: None     EISSN: 19487185     Source Type: Journal    
DOI: 10.1021/acs.jpclett.6b01562     Document Type: Article
Times cited : (95)

References (60)
  • 4
    • 84948182861 scopus 로고    scopus 로고
    • 2 Nanosheets and Their Sensing Applications
    • 2 Nanosheets and Their Sensing Applications Nanoscale 2015, 7 (2) 19358-19376 10.1039/C5NR06144J
    • (2015) Nanoscale , vol.7 , Issue.2 , pp. 19358-19376
    • Huang, Y.1    Guo, J.2    Kang, Y.3    Ai, Y.4    Li, C.5
  • 6
    • 84945397759 scopus 로고    scopus 로고
    • Beyond Graphene
    • Ornes, S. Beyond Graphene Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 13128-13130 10.1073/pnas.1515378112
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 13128-13130
    • Ornes, S.1
  • 7
    • 84922953665 scopus 로고    scopus 로고
    • Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene
    • Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene Small 2015, 11, 640-652 10.1002/smll.201402041
    • (2015) Small , vol.11 , pp. 640-652
    • Balendhran, S.1    Walia, S.2    Nili, H.3    Sriram, S.4    Bhaskaran, M.5
  • 11
    • 84943614783 scopus 로고    scopus 로고
    • The Effect of Substrate and External Strain on Electronic Structures of Stanene Film
    • Wang, D.; Chen, L.; Wang, X.; Cui, G.; Zhang, P. The Effect of Substrate and External Strain on Electronic Structures of Stanene Film Phys. Chem. Chem. Phys. 2015, 17, 26979-26987 10.1039/C5CP04322K
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , pp. 26979-26987
    • Wang, D.1    Chen, L.2    Wang, X.3    Cui, G.4    Zhang, P.5
  • 13
    • 84905750122 scopus 로고    scopus 로고
    • Two-Dimensional Time-Reversal-Invariant Topological Superconductivity in a Doped Quantum Spin-Hall Insulator
    • Wang, J.; Xu, Y.; Zhang, S.-C. Two-Dimensional Time-Reversal-Invariant Topological Superconductivity in a Doped Quantum Spin-Hall Insulator Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 54503 10.1103/PhysRevB.90.054503
    • (2014) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.90 , pp. 54503
    • Wang, J.1    Xu, Y.2    Zhang, S.-C.3
  • 14
    • 84919740656 scopus 로고    scopus 로고
    • Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials
    • Wu, S.-C.; Shan, G.; Yan, B. Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials Phys. Rev. Lett. 2014, 113, 256401 10.1103/PhysRevLett.113.256401
    • (2014) Phys. Rev. Lett. , vol.113 , pp. 256401
    • Wu, S.-C.1    Shan, G.2    Yan, B.3
  • 15
    • 84901924664 scopus 로고    scopus 로고
    • Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators
    • Xu, Y.; Gan, Z.; Zhang, S.-C. Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators Phys. Rev. Lett. 2014, 112, 226801 10.1103/PhysRevLett.112.226801
    • (2014) Phys. Rev. Lett. , vol.112 , pp. 226801
    • Xu, Y.1    Gan, Z.2    Zhang, S.-C.3
  • 17
    • 84955602314 scopus 로고    scopus 로고
    • Ultrahigh Power Factor and Thermoelectric Performance in Hole-Doped Single-Crystal SnSe
    • Zhao, L.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, S.; Gong, H.; Xu, V. P.; Dravid, C. et al. Ultrahigh Power Factor and Thermoelectric Performance in Hole-Doped Single-Crystal SnSe Science 2016, 141, 6269 10.1126/science.aad3749
    • (2016) Science , vol.141 , pp. 6269
    • Zhao, L.1    Tan, G.2    Hao, S.3    He, J.4    Pei, Y.5    Chi, H.6    Wang, S.7    Gong, H.8    Xu, V.P.9    Dravid, C.10
  • 18
    • 84957818898 scopus 로고    scopus 로고
    • Low Lattice Thermal Conductivity of Stanene
    • Peng, B.; Zhang, H.; Shao, H.; Xu, Y.; Zhang, X.; Zhu, H. Low Lattice Thermal Conductivity of Stanene Sci. Rep. 2016, 6, 20225 10.1038/srep20225
    • (2016) Sci. Rep. , vol.6 , pp. 20225
    • Peng, B.1    Zhang, H.2    Shao, H.3    Xu, Y.4    Zhang, X.5    Zhu, H.6
  • 19
    • 84957663151 scopus 로고    scopus 로고
    • Tensile Strains Give Rise to Strong Size Effects for Thermal Conductivities of Silicene, Germanene and Stanene
    • Kuang, Y.; Lindsay, L.; Shi, S.; Zheng, G.-P. Tensile Strains Give Rise to Strong Size Effects for Thermal Conductivities of Silicene, Germanene and Stanene Nanoscale 2016, 8, 3760-3767 10.1039/C5NR08231E
    • (2016) Nanoscale , vol.8 , pp. 3760-3767
    • Kuang, Y.1    Lindsay, L.2    Shi, S.3    Zheng, G.-P.4
  • 20
    • 84865620403 scopus 로고    scopus 로고
    • Role of Nanostructure on Reaction and Transport in Ni/Al Intermolecular Reactive Composites
    • Cherukara, M. J.; Vishnu, K.; Strachan, A. Role of Nanostructure on Reaction and Transport in Ni/Al Intermolecular Reactive Composites Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 075470 10.1103/PhysRevB.86.075470
    • (2012) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.86 , pp. 075470
    • Cherukara, M.J.1    Vishnu, K.2    Strachan, A.3
  • 21
    • 84963615078 scopus 로고    scopus 로고
    • Shock Loading of Granular Ni/Al Composites. Part 2: Shock-Induced Chemistry
    • Cherukara, M. J.; Germann, T. C.; Kober, E. M.; Strachan, A. Shock Loading of Granular Ni/Al Composites. Part 2: Shock-Induced Chemistry J. Phys. Chem. C 2016, 120, 6804-6813 10.1021/acs.jpcc.5b11528
    • (2016) J. Phys. Chem. C , vol.120 , pp. 6804-6813
    • Cherukara, M.J.1    Germann, T.C.2    Kober, E.M.3    Strachan, A.4
  • 22
    • 84957663089 scopus 로고    scopus 로고
    • Hierarchical Thermoelectrics: Crystal Grain Boundaries as Scalable Phonon Scatterers
    • Selli, D.; Boulfelfel, S. E.; Schapotschnikow, P.; Donadio, D.; Leoni, S. Hierarchical Thermoelectrics: Crystal Grain Boundaries as Scalable Phonon Scatterers Nanoscale 2016, 8, 3729-3738 10.1039/C5NR05279C
    • (2016) Nanoscale , vol.8 , pp. 3729-3738
    • Selli, D.1    Boulfelfel, S.E.2    Schapotschnikow, P.3    Donadio, D.4    Leoni, S.5
  • 23
    • 84959340009 scopus 로고    scopus 로고
    • Molecular Dynamics Study on the Nucleation of Al-Si Melts on Sheet Substrates at the Nanoscale
    • Liu, S.; Zhou, X.; Wu, W.; Zhu, X.; Duan, Y.; Li, H.; Wang, X. Molecular Dynamics Study on the Nucleation of Al-Si Melts on Sheet Substrates at the Nanoscale Nanoscale 2016, 8, 4520-4528 10.1039/C5NR06097D
    • (2016) Nanoscale , vol.8 , pp. 4520-4528
    • Liu, S.1    Zhou, X.2    Wu, W.3    Zhu, X.4    Duan, Y.5    Li, H.6    Wang, X.7
  • 24
    • 84975499439 scopus 로고    scopus 로고
    • Sequential Protein Unfolding through a Carbon Nanotube Pore
    • Xu, Z.; Zhang, S.; Weber, J. K.; Luan, B.; Zhou, R.; Li, J. Sequential Protein Unfolding through a Carbon Nanotube Pore Nanoscale 2016, 8, 12143-12151 10.1039/C6NR00410E
    • (2016) Nanoscale , vol.8 , pp. 12143-12151
    • Xu, Z.1    Zhang, S.2    Weber, J.K.3    Luan, B.4    Zhou, R.5    Li, J.6
  • 25
    • 83655192462 scopus 로고    scopus 로고
    • Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime
    • Wingert, M. C.; Chen, Z. C. Y.; Dechaumphai, E.; Moon, J.; Kim, J.-H.; Xiang, J.; Chen, R. Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime Nano Lett. 2011, 11, 5507-5513 10.1021/nl203356h
    • (2011) Nano Lett. , vol.11 , pp. 5507-5513
    • Wingert, M.C.1    Chen, Z.C.Y.2    Dechaumphai, E.3    Moon, J.4    Kim, J.-H.5    Xiang, J.6    Chen, R.7
  • 26
    • 77949425589 scopus 로고    scopus 로고
    • Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires
    • Donadio, D.; Galli, G. Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires Nano Lett. 2010, 10, 847-851 10.1021/nl903268y
    • (2010) Nano Lett. , vol.10 , pp. 847-851
    • Donadio, D.1    Galli, G.2
  • 27
    • 84946888077 scopus 로고    scopus 로고
    • Thermal Conductivity of Phosphorene Nanoribbon: A Comparative Study with Graphene
    • Hong, Y.; Zhang, J.; Huang, X.; Zeng, X. C. Thermal Conductivity of Phosphorene Nanoribbon: A Comparative Study with Graphene Nanoscale 2015, 7, 18716-18724 10.1039/C5NR03577E
    • (2015) Nanoscale , vol.7 , pp. 18716-18724
    • Hong, Y.1    Zhang, J.2    Huang, X.3    Zeng, X.C.4
  • 28
    • 84898478587 scopus 로고    scopus 로고
    • General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide
    • Jaramillo-Botero, A.; Naserifar, S.; Goddard, W. A., III General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide J. Chem. Theory Comput. 2014, 10, 1426-1439 10.1021/ct5001044
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 1426-1439
    • Jaramillo-Botero, A.1    Naserifar, S.2    Goddard, W.A.3
  • 29
    • 0000238336 scopus 로고
    • A Simplex Method for Function Minimization
    • Nelder, J. A.; Mead, R. A Simplex Method for Function Minimization Comput. J. 1965, 7 (4) 308-313 10.1093/comjnl/7.4.308
    • (1965) Comput. J. , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 32
    • 84976878556 scopus 로고    scopus 로고
    • Describing the Diverse Geometries of Gold from Nanoclusters to Bulk - A First-Principles-Based Hybrid Bond-Order Potential
    • Narayanan, B.; Kinaci, A.; Sen, F. G.; Davis, M. J.; Gray, S. K.; Chan, M. K. Y.; Sankaranarayanan, S. K. R. S. Describing the Diverse Geometries of Gold from Nanoclusters to Bulk-A First-Principles-Based Hybrid Bond-Order Potential J. Phys. Chem. C 2016, 120, 13787-13800 10.1021/acs.jpcc.6b02934
    • (2016) J. Phys. Chem. C , vol.120 , pp. 13787-13800
    • Narayanan, B.1    Kinaci, A.2    Sen, F.G.3    Davis, M.J.4    Gray, S.K.5    Chan, M.K.Y.6    Sankaranarayanan, S.K.R.S.7
  • 33
    • 16444366630 scopus 로고
    • New Empirical Approach for the Structure and Energy of Covalent Systems
    • Tersoff, J. New Empirical Approach for the Structure and Energy of Covalent Systems Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 6991-7000 10.1103/PhysRevB.37.6991
    • (1988) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.37 , pp. 6991-7000
    • Tersoff, J.1
  • 34
    • 4243420264 scopus 로고
    • Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon
    • Tersoff, J. Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon Phys. Rev. Lett. 1988, 61, 2879-2882 10.1103/PhysRevLett.61.2879
    • (1988) Phys. Rev. Lett. , vol.61 , pp. 2879-2882
    • Tersoff, J.1
  • 35
    • 84861022092 scopus 로고    scopus 로고
    • Computational Aspects of Many-Body Potentials
    • Plimpton, S. J.; Thompson, A. P. Computational Aspects of Many-Body Potentials MRS Bull. 2012, 37, 513-521 10.1557/mrs.2012.96
    • (2012) MRS Bull. , vol.37 , pp. 513-521
    • Plimpton, S.J.1    Thompson, A.P.2
  • 36
    • 77955748985 scopus 로고    scopus 로고
    • Optimized Tersoff and Brenner Empirical Potential Parameters for Lattice Dynamics and Phonon Thermal Transport in Carbon Nanotubes and Graphene
    • Lindsay, L.; Broido, D. A. Optimized Tersoff and Brenner Empirical Potential Parameters for Lattice Dynamics and Phonon Thermal Transport in Carbon Nanotubes and Graphene Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 205441 10.1103/PhysRevB.81.205441
    • (2010) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.81 , pp. 205441
    • Lindsay, L.1    Broido, D.A.2
  • 37
    • 80052469943 scopus 로고    scopus 로고
    • Characterization of Thermal Transport in Low-Dimensional Boron Nitride Nanostructures
    • Sevik, C.; Kinaci, A.; Haskins, J. B.; Çaǧln, T. Characterization of Thermal Transport in Low-Dimensional Boron Nitride Nanostructures Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 85409 10.1103/PhysRevB.84.085409
    • (2011) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.84 , pp. 85409
    • Sevik, C.1    Kinaci, A.2    Haskins, J.B.3    Çaǧln, T.4
  • 38
    • 0002467378 scopus 로고
    • Fast Parallel Algorithms for Short-Range Molecular Dynamics
    • Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics J. Comput. Phys. 1995, 117, 1-19 10.1006/jcph.1995.1039
    • (1995) J. Comput. Phys. , vol.117 , pp. 1-19
    • Plimpton, S.1
  • 39
    • 67249122406 scopus 로고    scopus 로고
    • Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium
    • Cahangirov, S.; Topsakal, M.; Akturk, E.; Sahin, H.; Ciraci, S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium Phys. Rev. Lett. 2009, 102, 102 10.1103/PhysRevLett.102.236804
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 102
    • Cahangirov, S.1    Topsakal, M.2    Akturk, E.3    Sahin, H.4    Ciraci, S.5
  • 40
    • 84901660687 scopus 로고    scopus 로고
    • Beyond Graphene: Stable Elemental Monolayers of Silicene and Germanene
    • Roome, N. J.; Carey, J. D. Beyond Graphene: Stable Elemental Monolayers of Silicene and Germanene ACS Appl. Mater. Interfaces 2014, 6, 7743-7750 10.1021/am501022x
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 7743-7750
    • Roome, N.J.1    Carey, J.D.2
  • 41
    • 77949353337 scopus 로고    scopus 로고
    • The Response of Mechanical and Electronic Properties of Graphane to the Elastic Strain
    • Topsakal, M.; Cahangirov, S.; Ciraci, S. The Response of Mechanical and Electronic Properties of Graphane to the Elastic Strain Appl. Phys. Lett. 2010, 96, 091912 10.1063/1.3353968
    • (2010) Appl. Phys. Lett. , vol.96 , pp. 091912
    • Topsakal, M.1    Cahangirov, S.2    Ciraci, S.3
  • 42
    • 84903838390 scopus 로고    scopus 로고
    • Role of Strain on Electronic and Mechanical Response of Semiconducting Transition-Metal Dichalcogenide Monolayers: An Ab-Initio Study
    • Guzman, D. M.; Strachan, A. Role of Strain on Electronic and Mechanical Response of Semiconducting Transition-Metal Dichalcogenide Monolayers: An Ab-Initio Study J. Appl. Phys. 2014, 115, 243701 10.1063/1.4883995
    • (2014) J. Appl. Phys. , vol.115 , pp. 243701
    • Guzman, D.M.1    Strachan, A.2
  • 43
    • 47749150628 scopus 로고    scopus 로고
    • Of Monolayer Graphene
    • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Of Monolayer Graphene Science 2008, 321, 385-388 10.1126/science.1157996
    • (2008) Science , vol.321 , pp. 385-388
    • Lee, C.1    Wei, X.2    Kysar, J.W.3    Hone, J.4
  • 45
    • 84901021195 scopus 로고    scopus 로고
    • Anisotropic Thermal Conductivity of Graphene Wrinkles
    • Wang, C.; Liu, Y.; Li, L.; Tan, H. Anisotropic Thermal Conductivity of Graphene Wrinkles Nanoscale 2014, 6, 5703-5707 10.1039/c4nr00423j
    • (2014) Nanoscale , vol.6 , pp. 5703-5707
    • Wang, C.1    Liu, Y.2    Li, L.3    Tan, H.4
  • 46
    • 84897723121 scopus 로고    scopus 로고
    • Thermal Conductivity of Silicene Calculated Using an Optimized Stillinger-Weber Potential
    • Zhang, X.; Xie, H.; Hu, M.; Bao, H.; Yue, S.; Qin, G.; Su, G. Thermal Conductivity of Silicene Calculated Using an Optimized Stillinger-Weber Potential Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 054310 10.1103/PhysRevB.89.054310
    • (2014) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.89 , pp. 054310
    • Zhang, X.1    Xie, H.2    Hu, M.3    Bao, H.4    Yue, S.5    Qin, G.6    Su, G.7
  • 47
    • 84943614783 scopus 로고    scopus 로고
    • The Effect of Substrate and External Strain on Electronic Structures of Stanene Film
    • Wang, D.; Chen, L.; Wang, X.; Cui, G.; Zhang, P. The Effect of Substrate and External Strain on Electronic Structures of Stanene Film Phys. Chem. Chem. Phys. 2015, 17, 26979-26987 10.1039/C5CP04322K
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , pp. 26979-26987
    • Wang, D.1    Chen, L.2    Wang, X.3    Cui, G.4    Zhang, P.5
  • 48
    • 84957818898 scopus 로고    scopus 로고
    • Low Lattice Thermal Conductivity of Stanene
    • Peng, B.; Zhang, H.; Shao, H.; Xu, Y.; Zhang, X.; Zhu, H. Low Lattice Thermal Conductivity of Stanene Sci. Rep. 2016, 6, 20225 10.1038/srep20225
    • (2016) Sci. Rep. , vol.6 , pp. 20225
    • Peng, B.1    Zhang, H.2    Shao, H.3    Xu, Y.4    Zhang, X.5    Zhu, H.6
  • 49
    • 84903715451 scopus 로고    scopus 로고
    • Equilibrium Limit of Thermal Conduction and Boundary Scattering in Nanostructures
    • Haskins, J. B.; Klnacl, A.; Sevik, C.; Çaǧln, T. Equilibrium Limit of Thermal Conduction and Boundary Scattering in Nanostructures J. Chem. Phys. 2014, 140, 244112 10.1063/1.4884392
    • (2014) J. Chem. Phys. , vol.140 , pp. 244112
    • Haskins, J.B.1    Klnacl, A.2    Sevik, C.3    Çaǧln, T.4
  • 50
    • 84863653231 scopus 로고    scopus 로고
    • On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium Molecular Dynamics
    • Kinaci, A.; Haskins, J. B.; Cagin, T. On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium Molecular Dynamics J. Chem. Phys. 2012, 137, 014106 10.1063/1.4731450
    • (2012) J. Chem. Phys. , vol.137 , pp. 014106
    • Kinaci, A.1    Haskins, J.B.2    Cagin, T.3
  • 52
    • 79960644631 scopus 로고    scopus 로고
    • Thermal Properties of Graphene and Nanostructured Carbon Materials
    • Balandin, A. A. Thermal Properties of Graphene and Nanostructured Carbon Materials Nat. Mater. 2011, 10, 569-581 10.1038/nmat3064
    • (2011) Nat. Mater. , vol.10 , pp. 569-581
    • Balandin, A.A.1
  • 53
    • 84960086213 scopus 로고    scopus 로고
    • Thermal Conductivity of Armchair Black Phosphorus Nanotubes: A Molecular Dynamics Study
    • Hao, F.; Liao, X.; Xiao, H.; Chen, X. Thermal Conductivity of Armchair Black Phosphorus Nanotubes: A Molecular Dynamics Study Nanotechnology 2016, 27, 155703 10.1088/0957-4484/27/15/155703
    • (2016) Nanotechnology , vol.27 , pp. 155703
    • Hao, F.1    Liao, X.2    Xiao, H.3    Chen, X.4
  • 54
    • 0031559226 scopus 로고    scopus 로고
    • A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
    • Müller-Plathe, F. A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity J. Chem. Phys. 1997, 106, 6082 10.1063/1.473271
    • (1997) J. Chem. Phys. , vol.106 , pp. 6082
    • Müller-Plathe, F.1
  • 55
    • 4344668691 scopus 로고    scopus 로고
    • Chirality Dependence of the Thermal Conductivity of Carbon Nanotubes
    • Zhang, W.; Zhu, Z.; Wang, F.; Wang, T.; Sun, L.; Wang, Z. Chirality Dependence of the Thermal Conductivity of Carbon Nanotubes Nanotechnology 2004, 15, 936-939 10.1088/0957-4484/15/8/010
    • (2004) Nanotechnology , vol.15 , pp. 936-939
    • Zhang, W.1    Zhu, Z.2    Wang, F.3    Wang, T.4    Sun, L.5    Wang, Z.6
  • 56
    • 0035280055 scopus 로고    scopus 로고
    • Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
    • Osman, M. A.; Srivastava, D. Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes Nanotechnology 2001, 12, 21 10.1088/0957-4484/12/1/305
    • (2001) Nanotechnology , vol.12 , pp. 21
    • Osman, M.A.1    Srivastava, D.2
  • 57
    • 29744454515 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation of Heat Pulse Propagation in Single-Wall Carbon Nanotubes
    • Osman, M.; Srivastava, D. Molecular Dynamics Simulation of Heat Pulse Propagation in Single-Wall Carbon Nanotubes Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 125413 10.1103/PhysRevB.72.125413
    • (2005) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.72 , pp. 125413
    • Osman, M.1    Srivastava, D.2
  • 58
    • 84959254459 scopus 로고    scopus 로고
    • Spin-orbit Coupling Effects on Electronic Structures in Stanene Nanoribbons
    • Xiong, W.; Xia, C.; Peng, Y.; Du, J.; Wang, T.; Zhang, J.; Jia, Y. Spin-orbit Coupling Effects on Electronic Structures in Stanene Nanoribbons Phys. Chem. Chem. Phys. 2016, 18, 6534-6540 10.1039/C5CP07140B
    • (2016) Phys. Chem. Chem. Phys. , vol.18 , pp. 6534-6540
    • Xiong, W.1    Xia, C.2    Peng, Y.3    Du, J.4    Wang, T.5    Zhang, J.6    Jia, Y.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.