메뉴 건너뛰기




Volumn 120, Issue 12, 2016, Pages 6804-6813

Shock Loading of Granular Ni/Al Composites. Part 2: Shock-Induced Chemistry

Author keywords

[No Author keywords available]

Indexed keywords

IMPACT STRENGTH; KINETIC ENERGY; KINETICS; MOLECULAR DYNAMICS; NICKEL; REACTION INTERMEDIATES; VELOCITY;

EID: 84963615078     PISSN: 19327447     EISSN: 19327455     Source Type: Journal    
DOI: 10.1021/acs.jpcc.5b11528     Document Type: Article
Times cited : (39)

References (41)
  • 1
    • 1342325566 scopus 로고    scopus 로고
    • Collateral Damage
    • Giles, J. Collateral Damage Nature 2004, 427, 580-581 10.1038/427580a
    • (2004) Nature , vol.427 , pp. 580-581
    • Giles, J.1
  • 2
    • 34447115142 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation of Dynamical Response of Perfect and Porous Ni/Al Nanolaminates under Shock Loading
    • Zhao, S.; Germann, T.; Strachan, A. Molecular Dynamics Simulation of Dynamical Response of Perfect and Porous Ni/Al Nanolaminates under Shock Loading Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 1-6 10.1103/PhysRevB.76.014103
    • (2007) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.76 , pp. 1-6
    • Zhao, S.1    Germann, T.2    Strachan, A.3
  • 5
    • 79951641727 scopus 로고    scopus 로고
    • Thermal and Impact Reaction Initiation in Ni/Al Heterogeneous Reactive Systems
    • Reeves, R. V.; Mukasyan, A. S.; Son, S. F. Thermal and Impact Reaction Initiation in Ni/Al Heterogeneous Reactive Systems J. Phys. Chem. C 2010, 114, 14772-14780 10.1021/jp104686z
    • (2010) J. Phys. Chem. C , vol.114 , pp. 14772-14780
    • Reeves, R.V.1    Mukasyan, A.S.2    Son, S.F.3
  • 8
    • 42149104582 scopus 로고    scopus 로고
    • Exothermic Reaction Waves in Multilayer Nanofilms
    • Rogachev, A. S. Exothermic Reaction Waves in Multilayer Nanofilms Russ. Chem. Rev. 2008, 77, 21-37 10.1070/RC2008v077n01ABEH003748
    • (2008) Russ. Chem. Rev. , vol.77 , pp. 21-37
    • Rogachev, A.S.1
  • 9
    • 84879464382 scopus 로고    scopus 로고
    • A Generalized Reduced Model of Uniform and Self-Propagating Reactions in Reactive Nanolaminates
    • Alawieh, L.; Weihs, T. P.; Knio, O. M. A Generalized Reduced Model of Uniform and Self-Propagating Reactions in Reactive Nanolaminates Combust. Flame 2013, 160, 1857-1869 10.1016/j.combustflame.2013.03.016
    • (2013) Combust. Flame , vol.160 , pp. 1857-1869
    • Alawieh, L.1    Weihs, T.P.2    Knio, O.M.3
  • 10
    • 73649122021 scopus 로고    scopus 로고
    • Simulation of Reactive Nanolaminates Using Reduced Models: II. Normal Propagation
    • Salloum, M.; Knio, O. M. Simulation of Reactive Nanolaminates Using Reduced Models: II. Normal Propagation Combust. Flame 2010, 157, 436-445 10.1016/j.combustflame.2009.08.010
    • (2010) Combust. Flame , vol.157 , pp. 436-445
    • Salloum, M.1    Knio, O.M.2
  • 11
    • 65449186932 scopus 로고    scopus 로고
    • Effect of Varying Bilayer Spacing Distribution on Reaction Heat and Velocity in Reactive Al/Ni Multilayers
    • Knepper, R.; Snyder, M. R.; Fritz, G.; Fisher, K.; Knio, O. M.; Weihs, T. P. Effect of Varying Bilayer Spacing Distribution on Reaction Heat and Velocity in Reactive Al/Ni Multilayers J. Appl. Phys. 2009, 105, 083504 10.1063/1.3087490
    • (2009) J. Appl. Phys. , vol.105
    • Knepper, R.1    Snyder, M.R.2    Fritz, G.3    Fisher, K.4    Knio, O.M.5    Weihs, T.P.6
  • 12
    • 79960549070 scopus 로고    scopus 로고
    • Effect of Thermal Properties on Self-Propagating Fronts in Reactive Nanolaminates
    • Alawieh, L.; Knio, O. M.; Weihs, T. P. Effect of Thermal Properties on Self-Propagating Fronts in Reactive Nanolaminates J. Appl. Phys. 2011, 110, 013509 10.1063/1.3599847
    • (2011) J. Appl. Phys. , vol.110
    • Alawieh, L.1    Knio, O.M.2    Weihs, T.P.3
  • 13
    • 84896337741 scopus 로고    scopus 로고
    • Thermodynamic Interpretation of Reactive Processes in Ni-Al Nanolayers from Atomistic Simulations
    • Sandoval, L.; Campbell, G. H.; Marian, J. Thermodynamic Interpretation of Reactive Processes in Ni-Al Nanolayers from Atomistic Simulations Modell. Simul. Mater. Sci. Eng. 2014, 22, 025022 10.1088/0965-0393/22/2/025022
    • (2014) Modell. Simul. Mater. Sci. Eng. , vol.22
    • Sandoval, L.1    Campbell, G.H.2    Marian, J.3
  • 15
    • 84931263798 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations of the Reaction Mechanism in Ni/Al Reactive Intermetallics
    • Cherukara, M. J.; Weihs, T. P.; Strachan, A. Molecular Dynamics Simulations of the Reaction Mechanism in Ni/Al Reactive Intermetallics Acta Mater. 2015, 96, 1-9 10.1016/j.actamat.2015.06.008
    • (2015) Acta Mater. , vol.96 , pp. 1-9
    • Cherukara, M.J.1    Weihs, T.P.2    Strachan, A.3
  • 16
    • 84937720384 scopus 로고    scopus 로고
    • Shock Loading of Granular Ni/Al Composites. Part 1: Mechanics of Loading
    • Cherukara, M. J.; Germann, T. C.; Kober, E. M.; Strachan, A. Shock Loading of Granular Ni/Al Composites. Part 1: Mechanics of Loading J. Phys. Chem. C 2014, 118, 26377-26386 10.1021/jp507795w
    • (2014) J. Phys. Chem. C , vol.118 , pp. 26377-26386
    • Cherukara, M.J.1    Germann, T.C.2    Kober, E.M.3    Strachan, A.4
  • 17
    • 33847624109 scopus 로고    scopus 로고
    • Discrete Particle Simulation of Shock Wave Propagation in a Binary Ni+Al Powder Mixture
    • Eakins, D.; Thadhani, N. N. Discrete Particle Simulation of Shock Wave Propagation in a Binary Ni+Al Powder Mixture J. Appl. Phys. 2007, 101, 043508 10.1063/1.2431682
    • (2007) J. Appl. Phys. , vol.101
    • Eakins, D.1    Thadhani, N.N.2
  • 18
    • 63749083427 scopus 로고    scopus 로고
    • Defect Evolution and Pore Collapse in Crystalline Energetic Materials
    • Barton, N. R.; Winter, N. W.; Reaugh, J. E. Defect Evolution and Pore Collapse in Crystalline Energetic Materials Modell. Simul. Mater. Sci. Eng. 2009, 17, 035003 10.1088/0965-0393/17/3/035003
    • (2009) Modell. Simul. Mater. Sci. Eng. , vol.17
    • Barton, N.R.1    Winter, N.W.2    Reaugh, J.E.3
  • 19
    • 84863535528 scopus 로고    scopus 로고
    • Mesoscale Simulation of Shock Wave Propagation in Discrete Ni/Al Powder Mixtures
    • Austin, R. A.; McDowell, D. L.; Benson, D. J. Mesoscale Simulation of Shock Wave Propagation in Discrete Ni/Al Powder Mixtures J. Appl. Phys. 2012, 111, 123511 10.1063/1.4729304
    • (2012) J. Appl. Phys. , vol.111
    • Austin, R.A.1    McDowell, D.L.2    Benson, D.J.3
  • 20
    • 84896348619 scopus 로고    scopus 로고
    • The Deformation and Mixing of Several Ni/Al Powders under Shock Wave Loading: Effects of Initial Configuration
    • Austin, R. A.; McDowell, D. L.; Benson, D. J. The Deformation and Mixing of Several Ni/Al Powders under Shock Wave Loading: Effects of Initial Configuration Modell. Simul. Mater. Sci. Eng. 2014, 22, 025018 10.1088/0965-0393/22/2/025018
    • (2014) Modell. Simul. Mater. Sci. Eng. , vol.22
    • Austin, R.A.1    McDowell, D.L.2    Benson, D.J.3
  • 21
    • 33745014662 scopus 로고    scopus 로고
    • Beyond Finite-Size Scaling in Solidification Simulations
    • Streitz, F.; Glosli, J.; Patel, M. Beyond Finite-Size Scaling in Solidification Simulations Phys. Rev. Lett. 2006, 96, 225701 10.1103/PhysRevLett.96.225701
    • (2006) Phys. Rev. Lett. , vol.96
    • Streitz, F.1    Glosli, J.2    Patel, M.3
  • 22
    • 84894238701 scopus 로고    scopus 로고
    • Role of Atomic Variability and Mechanical Constraints on the Martensitic Phase Transformation of a Model Disordered Shape Memory Alloy via Molecular Dynamics
    • Morrison, K. R.; Cherukara, M. J.; Guda Vishnu, K.; Strachan, A. Role of Atomic Variability and Mechanical Constraints on the Martensitic Phase Transformation of a Model Disordered Shape Memory Alloy via Molecular Dynamics Acta Mater. 2014, 69, 30-36 10.1016/j.actamat.2014.02.001
    • (2014) Acta Mater. , vol.69 , pp. 30-36
    • Morrison, K.R.1    Cherukara, M.J.2    Guda Vishnu, K.3    Strachan, A.4
  • 23
    • 33750449999 scopus 로고    scopus 로고
    • Atomistic Simulations of Shock-Induced Alloying Reactions in Ni/Al Nanolaminates
    • Zhao, S.; Germann, T. C.; Strachan, A. Atomistic Simulations of Shock-Induced Alloying Reactions in Ni/Al Nanolaminates J. Chem. Phys. 2006, 125, 164707 10.1063/1.2359438
    • (2006) J. Chem. Phys. , vol.125
    • Zhao, S.1    Germann, T.C.2    Strachan, A.3
  • 24
    • 34548724956 scopus 로고    scopus 로고
    • Melting and Alloying of Ni/Al Nanolaminates Induced by Shock Loading: A Molecular Dynamics Simulation Study
    • Zhao, S.; Germann, T.; Strachan, A. Melting and Alloying of Ni/Al Nanolaminates Induced by Shock Loading: A Molecular Dynamics Simulation Study Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 1-5 10.1103/PhysRevB.76.104105
    • (2007) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.76 , pp. 1-5
    • Zhao, S.1    Germann, T.2    Strachan, A.3
  • 25
    • 72049118712 scopus 로고    scopus 로고
    • Development of an Interatomic Potential for the Ni-Al System
    • Purja Pun, G. P.; Mishin, Y. Development of an Interatomic Potential for the Ni-Al System Philos. Mag. 2009, 89, 3245-3267 10.1080/14786430903258184
    • (2009) Philos. Mag. , vol.89 , pp. 3245-3267
    • Purja Pun, G.P.1    Mishin, Y.2
  • 27
    • 0002467378 scopus 로고
    • Fast Parallel Algorithms for Short-Range Molecular Dynamics
    • Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics J. Comput. Phys. 1995, 117, 1-19 10.1006/jcph.1995.1039
    • (1995) J. Comput. Phys. , vol.117 , pp. 1-19
    • Plimpton, S.1
  • 28
    • 79959996155 scopus 로고    scopus 로고
    • A Molecular Dynamics Study of the Role of Relative Melting Temperatures in Reactive Ni/Al Nanolaminates
    • Weingarten, N. S.; Rice, B. M. A Molecular Dynamics Study of the Role of Relative Melting Temperatures in Reactive Ni/Al Nanolaminates J. Phys.: Condens. Matter 2011, 23, 275701 10.1088/0953-8984/23/27/275701
    • (2011) J. Phys.: Condens. Matter , vol.23
    • Weingarten, N.S.1    Rice, B.M.2
  • 29
    • 84881532353 scopus 로고    scopus 로고
    • Reaction Pathway of Ni/Al Clad Particles under Thermal Loading: A Molecular Dynamics Simulation
    • Wu, H.-Z.; Zhao, S.-J. Reaction Pathway of Ni/Al Clad Particles under Thermal Loading: A Molecular Dynamics Simulation J. Alloys Compd. 2013, 581, 519-525 10.1016/j.jallcom.2013.07.100
    • (2013) J. Alloys Compd. , vol.581 , pp. 519-525
    • Wu, H.-Z.1    Zhao, S.-J.2
  • 30
    • 84902340840 scopus 로고    scopus 로고
    • Shock-Induced Hotspot Formation and Chemical Reaction Initiation in PETN Containing a Spherical Void
    • Shan, T.; Thompson, A. P. Shock-Induced Hotspot Formation and Chemical Reaction Initiation in PETN Containing a Spherical Void J. Phys. Conf. Ser. 2014, 500, 172009 10.1088/1742-6596/500/17/172009
    • (2014) J. Phys. Conf. Ser. , vol.500
    • Shan, T.1    Thompson, A.P.2
  • 31
    • 35648971532 scopus 로고    scopus 로고
    • Reactive Nanojets: Nanostructure-Enhanced Chemical Reactions in a Defected Energetic Crystal
    • Nomura, K.; Kalia, R. K.; Nakano, A.; Vashishta, P. Reactive Nanojets: Nanostructure-Enhanced Chemical Reactions in a Defected Energetic Crystal Appl. Phys. Lett. 2007, 91, 183109 10.1063/1.2804557
    • (2007) Appl. Phys. Lett. , vol.91
    • Nomura, K.1    Kalia, R.K.2    Nakano, A.3    Vashishta, P.4
  • 32
    • 84880830940 scopus 로고    scopus 로고
    • Hot-Spot Contributions in Shocked High Explosives from Mesoscale Ignition Models
    • Levesque, G.; Vitello, P.; Howard, W. M. Hot-Spot Contributions in Shocked High Explosives from Mesoscale Ignition Models J. Appl. Phys. 2013, 113, 233513 10.1063/1.4811233
    • (2013) J. Appl. Phys. , vol.113
    • Levesque, G.1    Vitello, P.2    Howard, W.M.3
  • 33
    • 78650833832 scopus 로고    scopus 로고
    • Effects of Void Size, Density, and Arrangement on Deflagration and Detonation Sensitivity of a Reactive Empirical Bond Order High Explosive
    • Herring, S. D.; Germann, T. C.; Grønbech-Jensen, N. Effects of Void Size, Density, and Arrangement on Deflagration and Detonation Sensitivity of a Reactive Empirical Bond Order High Explosive Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 214108 10.1103/PhysRevB.82.214108
    • (2010) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.82
    • Herring, S.D.1    Germann, T.C.2    Grønbech-Jensen, N.3
  • 35
    • 79959996155 scopus 로고    scopus 로고
    • A Molecular Dynamics Study of the Role of Relative Melting Temperatures in Reactive Ni/Al Nanolaminates
    • Weingarten, N. S.; Rice, B. M. A Molecular Dynamics Study of the Role of Relative Melting Temperatures in Reactive Ni/Al Nanolaminates J. Phys.: Condens. Matter 2011, 23, 275701 10.1088/0953-8984/23/27/275701
    • (2011) J. Phys.: Condens. Matter , vol.23
    • Weingarten, N.S.1    Rice, B.M.2
  • 36
    • 79954568095 scopus 로고    scopus 로고
    • Role of Microstructure in Initiation of Ni-Al Reactive Multilayers
    • Crone, J. C.; Knap, J.; Chung, P. W.; Rice, B. M. Role of Microstructure in Initiation of Ni-Al Reactive Multilayers Appl. Phys. Lett. 2011, 98, 141910 10.1063/1.3575576
    • (2011) Appl. Phys. Lett. , vol.98
    • Crone, J.C.1    Knap, J.2    Chung, P.W.3    Rice, B.M.4
  • 37
    • 84865620403 scopus 로고    scopus 로고
    • Role of Nanostructure on Reaction and Transport in Ni/Al Intermolecular Reactive Composites
    • Cherukara, M. J.; Vishnu, K.; Strachan, A. Role of Nanostructure on Reaction and Transport in Ni/Al Intermolecular Reactive Composites Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 075470 10.1103/PhysRevB.86.075470
    • (2012) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.86
    • Cherukara, M.J.1    Vishnu, K.2    Strachan, A.3
  • 38
    • 84887316047 scopus 로고    scopus 로고
    • Interdiffusion of Ni-Al Multilayers: A Continuum and Molecular Dynamics Study
    • Xu, R.-G.; Falk, M. L.; Weihs, T. P. Interdiffusion of Ni-Al Multilayers: A Continuum and Molecular Dynamics Study J. Appl. Phys. 2013, 114, 163511 10.1063/1.4826527
    • (2013) J. Appl. Phys. , vol.114
    • Xu, R.-G.1    Falk, M.L.2    Weihs, T.P.3
  • 39
    • 79251479726 scopus 로고    scopus 로고
    • A Molecular Dynamics Study of the Role of Pressure on the Response of Reactive Materials to Thermal Initiation
    • Weingarten, N. S.; Mattson, W. D.; Yau, A. D.; Weihs, T. P.; Rice, B. M. A Molecular Dynamics Study of the Role of Pressure on the Response of Reactive Materials to Thermal Initiation J. Appl. Phys. 2010, 107, 093517 10.1063/1.3340965
    • (2010) J. Appl. Phys. , vol.107
    • Weingarten, N.S.1    Mattson, W.D.2    Yau, A.D.3    Weihs, T.P.4    Rice, B.M.5
  • 40
    • 0037170247 scopus 로고    scopus 로고
    • Modeling Heterogeneous Energetic Materials at the Mesoscale
    • Baer, M. R. Modeling Heterogeneous Energetic Materials at the Mesoscale Thermochim. Acta 2002, 384, 351-367 10.1016/S0040-6031(01)00794-8
    • (2002) Thermochim. Acta , vol.384 , pp. 351-367
    • Baer, M.R.1
  • 41
    • 84942532042 scopus 로고    scopus 로고
    • Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale
    • Wood, M. A.; Cherukara, M. J.; Kober, E. M.; Strachan, A. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale J. Phys. Chem. C 2015, 119, 22008-22015 10.1021/acs.jpcc.5b05362
    • (2015) J. Phys. Chem. C , vol.119 , pp. 22008-22015
    • Wood, M.A.1    Cherukara, M.J.2    Kober, E.M.3    Strachan, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.