-
1
-
-
84989163451
-
Animal Health Control
-
(Accessed on 14 October 2015)
-
[1] Food and Agriculture Organization of the United Nations, Animal Health Control. http://www.fao.org/ag/againfo/programmes/en/lead/toolbox/Tech/18Hyg.htm (Accessed on 14 October 2015).
-
-
-
Food and Agriculture Organization of the United Nations1
-
2
-
-
58749104911
-
An overview of the Babesia, Plasmodium and Theileria genomes: a comparative perspective
-
[2] Lau, A.O., An overview of the Babesia, Plasmodium and Theileria genomes: a comparative perspective. Mol. Biochem. Parasitol. 164 (2009), 1–8.
-
(2009)
Mol. Biochem. Parasitol.
, vol.164
, pp. 1-8
-
-
Lau, A.O.1
-
3
-
-
0037015613
-
Biological revelations
-
[3] Wirth, D.F., Biological revelations. Nature 419 (2002), 495–496.
-
(2002)
Nature
, vol.419
, pp. 495-496
-
-
Wirth, D.F.1
-
4
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
[4] Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169 (1987), 5429–5433.
-
(1987)
J. Bacteriol.
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
5
-
-
0034034401
-
Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria
-
[5] Mojica, F.J., Diez-Villasenor, C., Soria, E., Juez, G., Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36 (2000), 244–246.
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 244-246
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Soria, E.3
Juez, G.4
-
6
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
[6] Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 (2008), 960–964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
Snijders, A.P.6
-
7
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
[7] Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
8
-
-
0036408356
-
Identification of a novel family of sequence repeats among prokaryotes
-
[8] Jansen, R., van Embden, J.D., Gaastra, W., Schouls, L.M., Identification of a novel family of sequence repeats among prokaryotes. OMICS 6 (2002), 23–33.
-
(2002)
OMICS
, vol.6
, pp. 23-33
-
-
Jansen, R.1
van Embden, J.D.2
Gaastra, W.3
Schouls, L.M.4
-
9
-
-
0029166294
-
Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning
-
[9] Mojica, F.J., Ferrer, C., Juez, G., Rodriguez-Valera, F., Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17 (1995), 85–93.
-
(1995)
Mol. Microbiol.
, vol.17
, pp. 85-93
-
-
Mojica, F.J.1
Ferrer, C.2
Juez, G.3
Rodriguez-Valera, F.4
-
10
-
-
84881475586
-
Heritable genome editing in C. elegans via a CRISPR-Cas9 system
-
[10] Friedland, A.E., Tzur, Y.B., Esvelt, K.M., Colaiacovo, M.P., Church, G.M., Calarco, J.A., Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10 (2013), 741–743.
-
(2013)
Nat. Methods
, vol.10
, pp. 741-743
-
-
Friedland, A.E.1
Tzur, Y.B.2
Esvelt, K.M.3
Colaiacovo, M.P.4
Church, G.M.5
Calarco, J.A.6
-
11
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
[11] Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31 (2013), 227–229.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Tsai, S.Q.5
Sander, J.D.6
-
12
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
[12] DiCarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J., Church, G.M., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41 (2013), 4336–4343.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
13
-
-
84883819602
-
Heritable gene targeting in the mouse and rat using a CRISPR-Cas system
-
[13] Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 31 (2013), 681–683.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 681-683
-
-
Li, D.1
Qiu, Z.2
Shao, Y.3
Chen, Y.4
Guan, Y.5
Liu, M.6
-
14
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
-
[14] Cho, S.W., Kim, S., Kim, J.M., Kim, J.S., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31 (2013), 230–232.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
Kim, S.2
Kim, J.M.3
Kim, J.S.4
-
15
-
-
84885180177
-
Targeted mutagenesis in rice using CRISPR-Cas system
-
[15] Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., et al. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23 (2013), 1233–1236.
-
(2013)
Cell Res.
, vol.23
, pp. 1233-1236
-
-
Miao, J.1
Guo, D.2
Zhang, J.3
Huang, Q.4
Qin, G.5
Zhang, X.6
-
16
-
-
84927649779
-
Genetic screens and functional genomics using CRISPR/Cas9 technology
-
[16] Hartenian, E., Doench, J.G., Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J. 282 (2015), 1383–1393.
-
(2015)
FEBS J.
, vol.282
, pp. 1383-1393
-
-
Hartenian, E.1
Doench, J.G.2
-
17
-
-
0036267740
-
Identification of genes that are associated with DNA repeats in prokaryotes
-
[17] Jansen, R., Embden, J.D., Gaastra, W., Schouls, L.M., Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43 (2002), 1565–1575.
-
(2002)
Mol. Microbiol.
, vol.43
, pp. 1565-1575
-
-
Jansen, R.1
Embden, J.D.2
Gaastra, W.3
Schouls, L.M.4
-
18
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
[18] Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151 (2005), 2551–2561.
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
19
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR-Cas systems
-
[19] van der Oost, J., Westra, E.R., Jackson, R.N., Wiedenheft, B., Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12 (2014), 479–492.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 479-492
-
-
van der Oost, J.1
Westra, E.R.2
Jackson, R.N.3
Wiedenheft, B.4
-
20
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
[20] Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
-
21
-
-
84887955585
-
Programmable DNA cleavage in vitro by Cas9
-
[21] Karvelis, T., Gasiunas, G., Siksnys, V., Programmable DNA cleavage in vitro by Cas9. Biochem. Soc. Trans. 41 (2013), 1401–1406.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 1401-1406
-
-
Karvelis, T.1
Gasiunas, G.2
Siksnys, V.3
-
22
-
-
84906840855
-
CRISPR-mediated genome editing of Plasmodium falciparum malaria parasites
-
[22] Lee, M.C., Fidock, D.A., CRISPR-mediated genome editing of Plasmodium falciparum malaria parasites. Genome Med., 6, 2014, 63.
-
(2014)
Genome Med.
, vol.6
, pp. 63
-
-
Lee, M.C.1
Fidock, D.A.2
-
23
-
-
84921644699
-
Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum
-
[23] Wagner, J.C., Platt, R.J., Goldfless, S.J., Zhang, F., Niles, J.C., Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat. Methods 11 (2014), 915–918.
-
(2014)
Nat. Methods
, vol.11
, pp. 915-918
-
-
Wagner, J.C.1
Platt, R.J.2
Goldfless, S.J.3
Zhang, F.4
Niles, J.C.5
-
24
-
-
84907188569
-
Efficient editing of malaria parasite genome using the CRISPR/Cas9 system
-
[24] Zhang, C., Xiao, B., Jiang, Y., Zhao, Y., Li, Z., Gao, H., et al. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. MBio, 5, 2014, e01414.
-
(2014)
MBio
, vol.5
, pp. e01414
-
-
Zhang, C.1
Xiao, B.2
Jiang, Y.3
Zhao, Y.4
Li, Z.5
Gao, H.6
-
25
-
-
28444498006
-
Malaria Fact Sheet
-
Accessed from (Accessed on 014 October 2015)
-
[25] World Health Organization, Malaria Fact Sheet. Accessed from http://www.who.int/mediacentre/factsheets/fs094/en/ (Accessed on 014 October 2015).
-
-
-
World Health Organization1
-
26
-
-
84942194082
-
First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites
-
[26] Sollelis, L., Ghorbal, M., MacPherson, C.R., Martins, R.M., Kuk, N., Crobu, L., et al. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell. Microbiol. 17 (2015), 1405–1412.
-
(2015)
Cell. Microbiol.
, vol.17
, pp. 1405-1412
-
-
Sollelis, L.1
Ghorbal, M.2
MacPherson, C.R.3
Martins, R.M.4
Kuk, N.5
Crobu, L.6
-
27
-
-
84940827347
-
CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani
-
[27] Zhang, W.W., Matlashewski, G., CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani. MBio, 6, 2015, e00861.
-
(2015)
MBio
, vol.6
, pp. e00861
-
-
Zhang, W.W.1
Matlashewski, G.2
-
28
-
-
84924089024
-
CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi
-
[28] Peng, D., Kurup, S.P., Yao, P.Y., Minning, T.A., Tarleton, R.L., CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio 6 (2015), e02097–e02114.
-
(2015)
MBio
, vol.6
, pp. e02097-e02114
-
-
Peng, D.1
Kurup, S.P.2
Yao, P.Y.3
Minning, T.A.4
Tarleton, R.L.5
-
29
-
-
84940887923
-
CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment
-
[29] Lander, N., Li, Z.H., Niyogi, S., Docampo, R., CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio, 6, 2015, e01012.
-
(2015)
MBio
, vol.6
, pp. e01012
-
-
Lander, N.1
Li, Z.H.2
Niyogi, S.3
Docampo, R.4
-
30
-
-
84903975411
-
Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9
-
[30] Shen, B., Brown, K.M., Lee, T.D., Sibley, L.D., Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio, 5, 2014, e01114.
-
(2014)
MBio
, vol.5
, pp. e01114
-
-
Shen, B.1
Brown, K.M.2
Lee, T.D.3
Sibley, L.D.4
-
31
-
-
84929492506
-
Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti
-
[31] Dong, S., Lin, J., Held, N.L., Clem, R.J., Passarelli, A.L., Franz, A.W., Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. PLoS One, 10, 2015, e0122353.
-
(2015)
PLoS One
, vol.10
, pp. e0122353
-
-
Dong, S.1
Lin, J.2
Held, N.L.3
Clem, R.J.4
Passarelli, A.L.5
Franz, A.W.6
-
32
-
-
84927695100
-
Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti
-
[32] Kistler, K.E., Vosshall, L.B., Matthews, B.J., Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 11 (2015), 51–60.
-
(2015)
Cell Rep.
, vol.11
, pp. 51-60
-
-
Kistler, K.E.1
Vosshall, L.B.2
Matthews, B.J.3
-
33
-
-
84949220605
-
Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi
-
[33] Gantz, V.M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V.M., Bier, E., et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), E6736–E6743.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. E6736-E6743
-
-
Gantz, V.M.1
Jasinskiene, N.2
Tatarenkova, O.3
Fazekas, A.4
Macias, V.M.5
Bier, E.6
-
34
-
-
84961746317
-
Welcome to the CRISPR zoo
-
[34] Reardon, S., Welcome to the CRISPR zoo. Nature 531 (2016), 160–163.
-
(2016)
Nature
, vol.531
, pp. 160-163
-
-
Reardon, S.1
-
35
-
-
84902326796
-
CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna
-
[35] Nakanishi, T., Kato, Y., Matsuura, T., Watanabe, H., CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS One, 9, 2014, e98363.
-
(2014)
PLoS One
, vol.9
, pp. e98363
-
-
Nakanishi, T.1
Kato, Y.2
Matsuura, T.3
Watanabe, H.4
-
36
-
-
84877782955
-
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
-
[36] Sampson, T.R., Saroj, S.D., Llewellyn, A.C., Tzeng, Y.L., Weiss, D.S., A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497 (2013), 254–257.
-
(2013)
Nature
, vol.497
, pp. 254-257
-
-
Sampson, T.R.1
Saroj, S.D.2
Llewellyn, A.C.3
Tzeng, Y.L.4
Weiss, D.S.5
-
37
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
[37] Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343 (2014), 84–87.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
Scott, D.A.5
Mikkelsen, T.S.6
|