메뉴 건너뛰기




Volumn 32, Issue 7, 2011, Pages 1551-1557

Fault diagnosis method based on multi-sensors installed on the base and KPCA

Author keywords

Base; Fault diagnosis; Information fusion; KPCA; SVM

Indexed keywords

BASE; FAULT DIAGNOSIS METHOD; FAULT FEATURE; FAULT SIGNAL; KERNEL PARAMETER; KPCA; MULTI SENSOR; MULTIPLE SENSORS; ORIGINAL SIGNAL; SVM; VIBRATION SIGNAL; VIBRATION SOURCES; VIBRATION TESTING;

EID: 79961197072     PISSN: 02543087     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (19)
  • 1
    • 79961195101 scopus 로고    scopus 로고
    • Rotor crack fault diagnosis based on base and multi-vibrartion signal fusion
    • Xiangtan: Hunan University of Science and Technology
    • ZHANG T. Rotor crack fault diagnosis based on base and multi-vibrartion signal fusion[D]. Xiangtan: Hunan University of Science and Technology, 2010: 6-27.
    • (2010) , pp. 6-27
    • Zhang, T.1
  • 2
    • 79961197529 scopus 로고    scopus 로고
    • A study on the test approaches of characterization of machinery as vibrational sources
    • Wuhan: Huazhong University of Science and Technology
    • YUAN CH H. A study on the test approaches of characterization of machinery as vibrational sources[D]. Wuhan: Huazhong University of Science and Technology, 2006: 57-100.
    • (2006) , pp. 57-100
    • Yuan, C.H.1
  • 3
    • 19544369314 scopus 로고    scopus 로고
    • Multi-sensor information fusion based on the combination of optimal weight and recursive least square algorithm
    • SUN Y, JING B, ZHANG J. Multi-sensor information fusion based on the combination of optimal weight and recursive least square algorithm[J]. Sensors and Actuators. 2004, 1(4): 630-632.
    • (2004) Sensors and Actuators , vol.1 , Issue.4 , pp. 630-632
    • Sun, Y.1    Jing, B.2    Zhang, J.3
  • 4
    • 79961174576 scopus 로고    scopus 로고
    • Combination method of Fisher theory and principle component for multi-sensor information fusion
    • WAN SH P. Combination method of Fisher theory and principle component for multi-sensor information fusion[J]. Journal of Computer Application, 2009, 29(3): 771-773.
    • (2009) Journal of Computer Application , vol.29 , Issue.3 , pp. 771-773
    • Wan, S.P.1
  • 5
    • 79961196008 scopus 로고    scopus 로고
    • Discussion on multi-sensor information fusion technology and mechanical fault diagnosis
    • DU J X. Discussion on multi-sensor information fusion technology and mechanical fault diagnosis[J]. Mechanical Engineering & Automation. 2009, 29(3): 771-773.
    • (2009) Mechanical Engineering & Automation , vol.29 , Issue.3 , pp. 771-773
    • Du, J.X.1
  • 6
    • 77950979995 scopus 로고    scopus 로고
    • Information fusion method of simultaneous fault diagnosis based on random set theory
    • XU X B, WEN CH L, JIANG H N, et al. Information fusion method of simultaneous fault diagnosis based on random set theory[J]. Chinese Journal of Scientific Instrument 2010, 31(2): 334-340.
    • (2010) Chinese Journal of Scientific Instrument , vol.31 , Issue.2 , pp. 334-340
    • Xu, X.B.1    Wen, C.L.2    Jiang, H.N.3
  • 7
    • 67649438650 scopus 로고    scopus 로고
    • Fault diagnosis method based on empirical mode decomposition and support vector machine
    • SHEN ZH X, HUANG X Y, MA X X. Fault diagnosis method based on empirical mode decomposition and support vector machine[J]. Control and Decision. 2009, 24(6): 889-893.
    • (2009) Control and Decision , vol.24 , Issue.6 , pp. 889-893
    • Shen, Z.X.1    Huang, X.Y.2    Ma, X.X.3
  • 8
    • 34249313653 scopus 로고    scopus 로고
    • Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory
    • BASIR O, YUAN X H. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion, 2007, 8(4): 379-386.
    • (2007) Information Fusion , vol.8 , Issue.4 , pp. 379-386
    • Basir, O.1    Yuan, X.H.2
  • 9
    • 79957637175 scopus 로고    scopus 로고
    • Obstacle avoidance of mobile robot based on data fusion technology of production rule multi-sensor
    • XU F, XIAN B J, LI ZH X. Obstacle avoidance of mobile robot based on data fusion technology of production rule multi-sensor[J]. Journal of Electronic Measurement and Instrument. 2009, 23(10): 73-79.
    • (2009) Journal of Electronic Measurement and Instrument , vol.23 , Issue.10 , pp. 73-79
    • Xu, F.1    Xian, B.J.2    Li, Z.X.3
  • 10
    • 70449444882 scopus 로고    scopus 로고
    • The application of feature extraction on using kernel principal component analysis based on clustering
    • WANG H Y, YAO ZH AN, LI L. The application of feature extraction on using kernel principal component analysis based on clustering[J]. Computer Science. 2005,32(4): 64-66.
    • (2005) Computer Science , vol.32 , Issue.4 , pp. 64-66
    • Wang, H.Y.1    Yao, Z.A.2    Li, L.3
  • 11
    • 31844449819 scopus 로고    scopus 로고
    • KPCA based on feature samples for fault detection
    • FAN Y G, LI P, SONG ZH H. KPCA based on feature samples for fault detection[J]. Control and Decision. 2005, 20(12): 1415-1418.
    • (2005) Control and Decision , vol.20 , Issue.12 , pp. 1415-1418
    • Fan, Y.G.1    Li, P.2    Song, Z.H.3
  • 12
    • 67651177725 scopus 로고    scopus 로고
    • Feature reduction method based on wavelet kernel-PCA
    • GUO L, CHEN J, ZHU Y. Feature reduction method based on wavelet kernel-PCA[J]. Journal of Vibration Engineering. 2009, 22(3): 288-291.
    • (2009) Journal of Vibration Engineering , vol.22 , Issue.3 , pp. 288-291
    • Guo, L.1    Chen, J.2    Zhu, Y.3
  • 13
    • 0442310886 scopus 로고    scopus 로고
    • Kernel principal component analysis and its application in gear fault diagnosis
    • LI W H, LIAO G L, SHI T L. Kernel principal component analysis and its application in gear fault diagnosis[J]. Chinese Journal of Mechanical Engineering. 2003, 39(8): 67-70.
    • (2003) Chinese Journal of Mechanical Engineering , vol.39 , Issue.8 , pp. 67-70
    • Li, W.H.1    Liao, G.L.2    Shi, T.L.3
  • 14
    • 78650780371 scopus 로고    scopus 로고
    • Nonlinear process monitoring and fault diagnosis based on KPCA and MKL-SVM
    • XU J, HU SH S. Nonlinear process monitoring and fault diagnosis based on KPCA and MKL-SVM[J]. Chinese Journal of Scientific Instrument. 2010, 31(11): 2428-2433.
    • (2010) Chinese Journal of Scientific Instrument , vol.31 , Issue.11 , pp. 2428-2433
    • Xu, J.1    Hu, S.S.2
  • 15
  • 17
    • 77954797032 scopus 로고    scopus 로고
    • New method of analog circuit fault diagnosis using fuzzy support vector machine
    • TANG J Y, SHI Y B. New method of analog circuit fault diagnosis using fuzzy support vector machine[J]. Journal of Electronic Measurement and Instrument. 2009, 23(6): 8-11.
    • (2009) Journal of Electronic Measurement and Instrument , vol.23 , Issue.6 , pp. 8-11
    • Tang, J.Y.1    Shi, Y.B.2
  • 18
    • 57149090668 scopus 로고    scopus 로고
    • Research and analysis of methods for multiclass support vector machines
    • ZHAO CH H, CHEN W H, GUO CH Y. Research and analysis of methods for multiclass support vector machines[J]. CAAI Transactions on Intelligent Systems. 2007, 2(2): 11-15.
    • (2007) CAAI Transactions on Intelligent Systems , vol.2 , Issue.2 , pp. 11-15
    • Zhao, C.H.1    Chen, W.H.2    Guo, C.Y.3
  • 19
    • 64249129987 scopus 로고    scopus 로고
    • Multi-class fault diagnosis based on support vector machines with sequenced binary tree architecture
    • YUAN SH F, ZHU F L. Multi-class fault diagnosis based on support vector machines with sequenced binary tree architecture[J]. Journal Of vibration and shock. 2009, 28(3): 51-54.
    • (2009) Journal Of Vibration and Shock , vol.28 , Issue.3 , pp. 51-54
    • Yuan, S.F.1    Zhu, F.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.