메뉴 건너뛰기




Volumn 44, Issue 4, 2016, Pages 276-285

Hypoxia-Inducible Factor-1α Activates the Transforming Growth Factor-β/SMAD3 Pathway in Kidney Tubular Epithelial Cells

Author keywords

Chromatin immunoprecipitation sequencing; Hypoxia; Hypoxia inducible factor 1a; Kidney tubular epithelial cell; RNA sequencing; SMAD3; Transforming growth factor

Indexed keywords

COLLAGEN TYPE 1; HYPOXIA INDUCIBLE FACTOR 1ALPHA; PEPTIDASE; SERINE PROTEINASE INHIBITOR; SMAD3 PROTEIN; TRANSFORMING GROWTH FACTOR BETA; COLLAGEN TYPE I, ALPHA 1 CHAIN; MESSENGER RNA; PLASMINOGEN ACTIVATOR INHIBITOR 1; SERPINE1 PROTEIN, HUMAN; SMAD3 PROTEIN, HUMAN; TRANSCRIPTOME;

EID: 84988428975     PISSN: 02508095     EISSN: 14219670     Source Type: Journal    
DOI: 10.1159/000449323     Document Type: Article
Times cited : (50)

References (38)
  • 1
    • 0019451345 scopus 로고
    • The obliteration of the postglomerular capillaries and its influence upon the function of both glomeruli and tubuli. Functional interpretation of morphologic findings
    • Bohle A, von Gise H, Mackensen-Haen S, Stark-Jakob B: the obliteration of the postglomerular capillaries and its influence upon the function of both glomeruli and tubuli. Functional interpretation of morphologic findings. Klin Wochenschr 1981; 59: 1043-1051.
    • (1981) Klin Wochenschr , vol.59 , pp. 1043-1051
    • Bohle, A.1    Von Gise, H.2    Mackensen-Haen, S.3    Stark-Jakob, B.4
  • 2
    • 33645452371 scopus 로고    scopus 로고
    • Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure
    • Nangaku M: Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure. J Am Soc Nephrol 2006; 17: 17-25.
    • (2006) J Am Soc Nephrol , vol.17 , pp. 17-25
    • Nangaku, M.1
  • 3
    • 78049378469 scopus 로고    scopus 로고
    • The suffocating kidney: Tubulointerstitial hypoxia in end-stage renal disease
    • Mimura I, Nangaku M: the suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 2010; 6: 667-678.
    • (2010) Nat Rev Nephrol , vol.6 , pp. 667-678
    • Mimura, I.1    Nangaku, M.2
  • 4
    • 84875030827 scopus 로고    scopus 로고
    • AKI transition of care: A potential opportunity to detect and prevent CKD
    • Goldstein SL, Jaber BL, Faubel S, Chawla LS: AKI transition of care: A potential opportunity to detect and prevent CKD. Clin J Am Soc Nephrol 2013; 8: 476-483.
    • (2013) Clin J Am Soc Nephrol , vol.8 , pp. 476-483
    • Goldstein, S.L.1    Jaber, B.L.2    Faubel, S.3    Chawla, L.S.4
  • 5
    • 84957627506 scopus 로고    scopus 로고
    • Expanding roles of the hypoxiaresponse network in chronic kidney disease
    • Epub ahead of print
    • Tanaka T: Expanding roles of the hypoxiaresponse network in chronic kidney disease. Clin Exp Nephrol 2016, Epub ahead of print.
    • (2016) Clin Exp Nephrol
    • Tanaka, T.1
  • 6
    • 72949089927 scopus 로고    scopus 로고
    • Experimental ischemia-reperfusion: Biases and myths-the proximal vs. Distal hypoxic tubular injury debate revisited
    • Heyman SN, Rosenberger C, Rosen S: Experimental ischemia-reperfusion: biases and myths-the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int 2010; 77: 9-16.
    • (2010) Kidney Int , vol.77 , pp. 9-16
    • Heyman, S.N.1    Rosenberger, C.2    Rosen, S.3
  • 7
    • 84913596330 scopus 로고    scopus 로고
    • Hypoxia as a key player in the AKI-to-CKD transition
    • Tanaka S, Tanaka T, Nangaku M: Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 2014; 307:F1187-F1195.
    • (2014) Am J Physiol Renal Physiol , vol.307 , pp. F1187-F1195
    • Tanaka, S.1    Tanaka, T.2    Nangaku, M.3
  • 8
    • 43649093915 scopus 로고    scopus 로고
    • Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
    • Kaelin WG Jr, Ratcliffe PJ: Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393-402.
    • (2008) Mol Cell , vol.30 , pp. 393-402
    • Kaelin, W.G.1    Ratcliffe, P.J.2
  • 9
    • 36849049298 scopus 로고    scopus 로고
    • Hypoxia and the HIF system in kidney disease
    • Nangaku M, Eckardt KU: Hypoxia and the HIF system in kidney disease. J Mol Med (Berl) 2007; 85: 1325-1330.
    • (2007) J Mol Med (Berl) , vol.85 , pp. 1325-1330
    • Nangaku, M.1    Eckardt, K.U.2
  • 10
    • 84875698523 scopus 로고    scopus 로고
    • Angiogenesis and hypoxia in the kidney
    • Tanaka T, Nangaku M: Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol 2013; 9: 211-222.
    • (2013) Nat Rev Nephrol , vol.9 , pp. 211-222
    • Tanaka, T.1    Nangaku, M.2
  • 11
    • 36849021771 scopus 로고    scopus 로고
    • Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition
    • Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, et al: Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007; 117: 3810-3820.
    • (2007) J Clin Invest , vol.117 , pp. 3810-3820
    • Higgins, D.F.1    Kimura, K.2    Bernhardt, W.M.3    Shrimanker, N.4    Akai, Y.5    Hohenstein, B.6
  • 14
    • 84864627973 scopus 로고    scopus 로고
    • Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A
    • Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, et al: Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 2012; 32: 3018-3032.
    • (2012) Mol Cell Biol , vol.32 , pp. 3018-3032
    • Mimura, I.1    Nangaku, M.2    Kanki, Y.3    Tsutsumi, S.4    Inoue, T.5    Kohro, T.6
  • 15
    • 84992416329 scopus 로고    scopus 로고
    • Integrated genome browser: Visual analytics platform for genomics
    • Freese NH, Norris DC, Loraine AE: Integrated genome browser: visual analytics platform for genomics. Bioinformatics 2016; 32: 2089-2095.
    • (2016) Bioinformatics , vol.32 , pp. 2089-2095
    • Freese, N.H.1    Norris, D.C.2    Loraine, A.E.3
  • 18
    • 84886780296 scopus 로고    scopus 로고
    • Dynamic trans-acting factor colocalization in human cells
    • Xie D, Boyle AP, Wu L, Zhai J, Kawli T, Snyder M: Dynamic trans-acting factor colocalization in human cells. Cell 2013; 155: 713-724.
    • (2013) Cell , vol.155 , pp. 713-724
    • Xie, D.1    Boyle, A.P.2    Wu, L.3    Zhai, J.4    Kawli, T.5    Snyder, M.6
  • 19
    • 84868305344 scopus 로고    scopus 로고
    • TGF-signaling in tissue fibrosis: Redox controls, target genes and therapeutic opportunities
    • Samarakoon R, Overstreet JM, Higgins PJ: tGF-signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal 2013; 25: 264-268.
    • (2013) Cell Signal , vol.25 , pp. 264-268
    • Samarakoon, R.1    Overstreet, J.M.2    Higgins, P.J.3
  • 20
    • 84856458462 scopus 로고    scopus 로고
    • Next-generation sequencing identifies TGF-1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy
    • Brennan EP, Morine MJ, Walsh DW, Roxburgh SA, Lindenmeyer MT, Brazil DP, et al: Next-generation sequencing identifies TGF-1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy. Biochim Biophys Acta 2012; 1822: 589-599.
    • (2012) Biochim Biophys Acta , vol.1822 , pp. 589-599
    • Brennan, E.P.1    Morine, M.J.2    Walsh, D.W.3    Roxburgh, S.A.4    Lindenmeyer, M.T.5    Brazil, D.P.6
  • 21
    • 84892378680 scopus 로고    scopus 로고
    • Hypoxia induces mesenchymal gene expression in renal tubular epithelial cells: An in vitro model of kidney transplant fibrosis
    • Zell S, Schmitt R, Witting S, Kreipe HH, Hussein K, Becker JU: Hypoxia induces mesenchymal gene expression in renal tubular epithelial cells: An in vitro model of kidney transplant fibrosis. Nephron Extra 2013; 3: 50-58.
    • (2013) Nephron Extra , vol.3 , pp. 50-58
    • Zell, S.1    Schmitt, R.2    Witting, S.3    Kreipe, H.H.4    Hussein, K.5    Becker, J.U.6
  • 25
    • 70350692093 scopus 로고    scopus 로고
    • The human HIF (hypoxia-inducible factor)-3alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction
    • Tanaka T, Wiesener M, Bernhardt W, Eckardt KU, Warnecke C: the human HIF (hypoxia-inducible factor)-3alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction. Biochem J 2009; 424: 143-151.
    • (2009) Biochem J , vol.424 , pp. 143-151
    • Tanaka, T.1    Wiesener, M.2    Bernhardt, W.3    Eckardt, K.U.4    Warnecke, C.5
  • 27
    • 84891560690 scopus 로고    scopus 로고
    • Revolution of nephrology research by deep sequencing: ChIP-seq and RNA-seq
    • Mimura I, Kanki Y, Kodama T, Nangaku M: Revolution of nephrology research by deep sequencing: ChIP-seq and RNA-seq. Kidney Int 2014; 85: 31-38.
    • (2014) Kidney Int , vol.85 , pp. 31-38
    • Mimura, I.1    Kanki, Y.2    Kodama, T.3    Nangaku, M.4
  • 28
    • 84883527272 scopus 로고    scopus 로고
    • Novel therapeutic strategy with hypoxia-inducible factors via reversible epigenetic regulation mechanisms in progressive tubulointerstitial fibrosis
    • Mimura I, Tanaka T, Nangaku M: Novel therapeutic strategy with hypoxia-inducible factors via reversible epigenetic regulation mechanisms in progressive tubulointerstitial fibrosis. Semin Nephrol 2013; 33: 375-382.
    • (2013) Semin Nephrol , vol.33 , pp. 375-382
    • Mimura, I.1    Tanaka, T.2    Nangaku, M.3
  • 29
    • 76049100577 scopus 로고    scopus 로고
    • HIF-1: Upstream and downstream of cancer metabolism
    • Semenza GL: HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 2010; 20: 51-56.
    • (2010) Curr Opin Genet Dev , vol.20 , pp. 51-56
    • Semenza, G.L.1
  • 30
    • 0030460724 scopus 로고    scopus 로고
    • Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1
    • Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271: 32529-32537.
    • (1996) J Biol Chem , vol.271 , pp. 32529-32537
    • Semenza, G.L.1    Jiang, B.H.2    Leung, S.W.3    Passantino, R.4    Concordet, J.P.5    Maire, P.6    Giallongo, A.7
  • 31
    • 80155137594 scopus 로고    scopus 로고
    • Master transcription factors determine cell-type-specific responses to TGF-signaling
    • Mullen AC, Orlando DA, Newman JJ, Loven J, Kumar RM, Bilodeau S, et al: Master transcription factors determine cell-type-specific responses to TGF-signaling. Cell 2011; 147: 565-576.
    • (2011) Cell , vol.147 , pp. 565-576
    • Mullen, A.C.1    Orlando, D.A.2    Newman, J.J.3    Loven, J.4    Kumar, R.M.5    Bilodeau, S.6
  • 32
    • 79955979410 scopus 로고    scopus 로고
    • Fibroblasts and myofibroblasts in renal fibrosis
    • Meran S, Steadman R: Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 2011; 92: 158-167.
    • (2011) Int J Exp Pathol , vol.92 , pp. 158-167
    • Meran, S.1    Steadman, R.2
  • 33
    • 0028493140 scopus 로고
    • Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury
    • Alpers CE, Hudkins KL, Floege J, Johnson RJ: Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury. J Am Soc Nephrol 1994; 5: 201-209.
    • (1994) J Am Soc Nephrol , vol.5 , pp. 201-209
    • Alpers, C.E.1    Hudkins, K.L.2    Floege, J.3    Johnson, R.J.4
  • 35
    • 0035894383 scopus 로고    scopus 로고
    • Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity
    • Lu J, Landerholm TE, Wei JS, Dong XR, Wu SP, Liu X, et al: Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol 2001; 240: 404-418.
    • (2001) Dev Biol , vol.240 , pp. 404-418
    • Lu, J.1    Landerholm, T.E.2    Wei, J.S.3    Dong, X.R.4    Wu, S.P.5    Liu, X.6
  • 37
    • 33644638349 scopus 로고    scopus 로고
    • Renal fibrosis: New insights into the pathogenesis and therapeutics
    • Liu Y: Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006; 69: 213-217.
    • (2006) Kidney Int , vol.69 , pp. 213-217
    • Liu, Y.1
  • 38
    • 84881619024 scopus 로고    scopus 로고
    • TGF-/ Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1 expression
    • Rozen-Zvi B, Hayashida T, Hubchak SC, Hanna C, Platanias LC, Schnaper HW: tGF-/ Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1 expression. Am J Physiol Renal Physiol 2013; 305:F485-F494.
    • (2013) Am J Physiol Renal Physiol , vol.305 , pp. F485-F494
    • Rozen-Zvi, B.1    Hayashida, T.2    Hubchak, S.C.3    Hanna, C.4    Platanias, L.C.5    Schnaper, H.W.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.