메뉴 건너뛰기




Volumn , Issue , 2015, Pages 275-284

Stochastic language generation in dialogue using recurrent neural networks with convolutional sentence reranking

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS; SPEECH PROCESSING; STOCHASTIC SYSTEMS;

EID: 84988423232     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/w15-4639     Document Type: Conference Paper
Times cited : (176)

References (45)
  • 3
    • 52149103407 scopus 로고    scopus 로고
    • Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models
    • October
    • Anja Belz. 2008. Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models. Natural Language Engineering, 14(4):431455, October.
    • (2008) Natural Language Engineering , vol.14 , Issue.4 , pp. 431455
    • Belz, A.1
  • 4
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 6
    • 62249217193 scopus 로고    scopus 로고
    • The ravenclaw dialog management framework: Architecture and systems
    • July
    • Dan Bohus and Alexander I. Rudnicky. 2009. The ravenclaw dialog management framework: Architecture and systems. Computer Speech and Language, 23(3):332-361, July.
    • (2009) Computer Speech and Language , vol.23 , Issue.3 , pp. 332-361
    • Bohus, D.1    Rudnicky, A.I.2
  • 9
    • 84907324581 scopus 로고    scopus 로고
    • Conditional random fields for responsive surface realisation using global features
    • Nina Dethlefs, Helen Hastie, Heriberto Cuayhuitl, and Oliver Lemon. 2013. Conditional random fields for responsive surface realisation using global features. In In Proceedings of ACL.
    • (2013) Proceedings of ACL
    • Dethlefs, N.1    Hastie, H.2    Cuayhuitl, H.3    Lemon, O.4
  • 13
    • 84941346354 scopus 로고    scopus 로고
    • Robust dialog state tracking using delexicalised recurrent neural networks and unsupervised adaptation
    • Matthew Henderson, Blaise Thomson, and Steve Young. 2014. Robust dialog state tracking using delexicalised recurrent neural networks and unsupervised adaptation. In Proceedings of IEEE Spoken Language Technology.
    • (2014) Proceedings of IEEE Spoken Language Technology
    • Henderson, M.1    Thomson, B.2    Young, S.3
  • 14
    • 84962412220 scopus 로고    scopus 로고
    • A convolutional neural network for modelling sentences
    • 1404.2188
    • Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling sentences. CoRR, abs/1404.2188.
    • (2014) CoRR
    • Kalchbrenner, N.1    Grefenstette, E.2    Blunsom, P.3
  • 15
    • 84959099868 scopus 로고    scopus 로고
    • Deep visualsemantic alignments for generating image descriptions
    • 1412.2306
    • Andrej Karpathy and Li Fei-Fei. 2014. Deep visualsemantic alignments for generating image descriptions. CoRR, abs/1412.2306.
    • (2014) CoRR
    • Karpathy, A.1    Fei-Fei, L.2
  • 16
    • 84961376850 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Doha, Qatar, October. Association for Computational Linguistics
    • Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746-1751, Doha, Qatar, October. Association for Computational Linguistics.
    • (2014) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) , pp. 1746-1751
    • Kim, Y.1
  • 18
    • 25444445484 scopus 로고
    • Where do phrases come from: Some preliminary experiments in connectionist phrase generation
    • Springer Netherlands
    • Karen Kukich. 1987. Where do phrases come from: Some preliminary experiments in connectionist phrase generation. In Natural Language Generation, volume 135 of NATO ASI Series, pages 405-421. Springer Netherlands.
    • (1987) Natural Language Generation, Volume 135 of NATO ASI Series , pp. 405-421
    • Kukich, K.1
  • 20
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, Nov.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 21
    • 84918491895 scopus 로고    scopus 로고
    • Stochastic language generation in dialogue using factored language models
    • François Mairesse and Steve Young. 2014. Stochastic language generation in dialogue using factored language models. Computer Linguistics, 40(4):763-799.
    • (2014) Computer Linguistics , vol.40 , Issue.4 , pp. 763-799
    • Mairesse, F.1    Young, S.2
  • 23
    • 84874235486 scopus 로고    scopus 로고
    • Context dependent recurrent neural network language model
    • Tomas Mikolov and Geoffrey Zweig. 2012. Context dependent recurrent neural network language model. In In Proceedings on IEEE SLT workshop.
    • (2012) Proceedings on IEEE SLT Workshop
    • Mikolov, T.1    Zweig, G.2
  • 33
    • 0036663624 scopus 로고    scopus 로고
    • Trainable approaches to surface natural language generation and their application to conversational dialog systems
    • Spoken Language Generation
    • Adwait Ratnaparkhi. 2002. Trainable approaches to surface natural language generation and their application to conversational dialog systems. Computer Speech and Language. Spoken Language Generation.
    • (2002) Computer Speech and Language
    • Ratnaparkhi, A.1
  • 34
    • 77956309283 scopus 로고    scopus 로고
    • Natural language generation as planning under uncertainty for spoken dialogue systems
    • Verena Rieser and Oliver Lemon. 2010. Natural language generation as planning under uncertainty for spoken dialogue systems. In Empirical Methods in Natural Language Generation, pages 105-120.
    • (2010) Empirical Methods in Natural Language Generation , pp. 105-120
    • Rieser, V.1    Lemon, O.2
  • 41
    • 0036663625 scopus 로고    scopus 로고
    • Training a sentence planner for spoken dialogue using boosting
    • Marilyn A Walker, Owen C Rambow, and Monica Rogati. 2002. Training a sentence planner for spoken dialogue using boosting. Computer Speech and Language, 16(3):409433.
    • (2002) Computer Speech and Language , vol.16 , Issue.3 , pp. 409433
    • Walker, M.A.1    Rambow, O.C.2    Rogati, M.3
  • 42
    • 0141811660 scopus 로고
    • Recent improvements in the emu spoken language understanding system
    • Association for Computational Linguistics
    • Wayne Ward and Sunil Issar. 1994. Recent improvements in the emu spoken language understanding system. In Proceedings of the Workshop on Human Language Technology, HLT'94, pages 213-216. Association for Computational Linguistics.
    • (1994) Proceedings of the Workshop on Human Language Technology, HLT'94 , pp. 213-216
    • Ward, W.1    Issar, S.2
  • 43
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Paul J Werbos. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 44
    • 84876682878 scopus 로고    scopus 로고
    • Pomdp-based statistical spoken dialog systems: A review
    • May
    • Steve Young, Milica Gašić, Blaise Thomson, and Jason D. Williams. 2013. Pomdp-based statistical spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160-1179, May.
    • (2013) Proceedings of the IEEE , vol.101 , Issue.5 , pp. 1160-1179
    • Young, S.1    Gašić, M.2    Thomson, B.3    Williams, J.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.