-
1
-
-
80052933197
-
Basic and therapeutic aspects of angiogenesis
-
[1] Potente, M., Gerhardt, H., Carmeliet, P., Basic and therapeutic aspects of angiogenesis. Cell 146 (2011), 873–887.
-
(2011)
Cell
, vol.146
, pp. 873-887
-
-
Potente, M.1
Gerhardt, H.2
Carmeliet, P.3
-
2
-
-
77953988924
-
Targeting the tumour vasculature: insights from physiological angiogenesis
-
[2] Chung, A.S., Lee, J., Ferrara, N., Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 10 (2010), 505–514.
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 505-514
-
-
Chung, A.S.1
Lee, J.2
Ferrara, N.3
-
3
-
-
84905381214
-
The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis
-
[3] McAllister, S.S., Weinberg, R.A., The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16 (2014), 717–727.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 717-727
-
-
McAllister, S.S.1
Weinberg, R.A.2
-
4
-
-
81255188940
-
Tumor angiogenesis: molecular pathways and therapeutic targets
-
[4] Weis, S.M., Cheresh, D.A., Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17 (2011), 1359–1370.
-
(2011)
Nat. Med.
, vol.17
, pp. 1359-1370
-
-
Weis, S.M.1
Cheresh, D.A.2
-
5
-
-
79957902010
-
Signal transduction by vascular endothelial growth factor receptors
-
[5] Koch, S., Tugues, S., Li, X., et al. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437 (2011), 169–183.
-
(2011)
Biochem. J.
, vol.437
, pp. 169-183
-
-
Koch, S.1
Tugues, S.2
Li, X.3
-
6
-
-
84871633270
-
Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases
-
[6] Shibuya, M., Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 153 (2013), 13–19.
-
(2013)
J. Biochem.
, vol.153
, pp. 13-19
-
-
Shibuya, M.1
-
7
-
-
33646557055
-
Angiogenesis—a new target for future therapy
-
[7] Pandya, N.M., Dhalla, N.S., Santani, D.D., Angiogenesis—a new target for future therapy. Vasc. Pharmacol. 44 (2006), 265–274.
-
(2006)
Vasc. Pharmacol.
, vol.44
, pp. 265-274
-
-
Pandya, N.M.1
Dhalla, N.S.2
Santani, D.D.3
-
8
-
-
67349133681
-
Angiogenesis and its targeting in rheumatoid arthritis
-
[8] Szekanecz, Z., Koch, A.E., Angiogenesis and its targeting in rheumatoid arthritis. Vasc. Pharmacol. 51 (2009), 1–7.
-
(2009)
Vasc. Pharmacol.
, vol.51
, pp. 1-7
-
-
Szekanecz, Z.1
Koch, A.E.2
-
9
-
-
64849116779
-
The role of vascular endothelial growth factor in wound healing
-
[9] Bao, P., Kodra, A., Tomic-Canic, M., et al. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 153 (2009), 347–358.
-
(2009)
J. Surg. Res.
, vol.153
, pp. 347-358
-
-
Bao, P.1
Kodra, A.2
Tomic-Canic, M.3
-
10
-
-
84896716303
-
Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents
-
[10] Limaverde-Sousa, G., Sternberg, C., Ferreira, C.G., Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat. Rev. 40 (2014), 548–557.
-
(2014)
Cancer Treat. Rev.
, vol.40
, pp. 548-557
-
-
Limaverde-Sousa, G.1
Sternberg, C.2
Ferreira, C.G.3
-
11
-
-
79952942752
-
Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis
-
[11] Bhise, N.S., Shmueli, R.B., Sunshine, J.C., et al. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opin. Drug Deliv. 8 (2011), 485–504.
-
(2011)
Expert Opin. Drug Deliv.
, vol.8
, pp. 485-504
-
-
Bhise, N.S.1
Shmueli, R.B.2
Sunshine, J.C.3
-
12
-
-
84869209158
-
Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels
-
[12] Asai, T., Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels. Biol. Pharm. Bull. 35 (2012), 1855–1861.
-
(2012)
Biol. Pharm. Bull.
, vol.35
, pp. 1855-1861
-
-
Asai, T.1
-
13
-
-
84885573070
-
Nanoparticulate drugs for the manipulation of angiogenesis
-
[13] Millar, T.M., Kanaras, A.G., Nanoparticulate drugs for the manipulation of angiogenesis. Ther. Deliv. 4 (2013), 1217–1219.
-
(2013)
Ther. Deliv.
, vol.4
, pp. 1217-1219
-
-
Millar, T.M.1
Kanaras, A.G.2
-
14
-
-
84942274908
-
Celecoxib nanoparticles for therapeutic angiogenesis
-
[14] Margulis, K., Neofytou, E.A., Beygui, R.E., Zare, R.N., Celecoxib nanoparticles for therapeutic angiogenesis. ACS Nano 9 (2015), 9416–9426.
-
(2015)
ACS Nano
, vol.9
, pp. 9416-9426
-
-
Margulis, K.1
Neofytou, E.A.2
Beygui, R.E.3
Zare, R.N.4
-
15
-
-
79960777945
-
Antiangiogenic anticancer strategy based on nanoparticulate systems
-
[15] Yoncheva, K., Momekov, G., Antiangiogenic anticancer strategy based on nanoparticulate systems. Expert Opin. Drug Deliv. 8 (2011), 1041–1056.
-
(2011)
Expert Opin. Drug Deliv.
, vol.8
, pp. 1041-1056
-
-
Yoncheva, K.1
Momekov, G.2
-
16
-
-
79955622231
-
Nanotechnology-mediated targeting of tumor angiogenesis
-
[16] Banerjee, D., Harfouche, R., Sengupta, S., Nanotechnology-mediated targeting of tumor angiogenesis. Vasc. Cell 3 (2011), 3–15.
-
(2011)
Vasc. Cell
, vol.3
, pp. 3-15
-
-
Banerjee, D.1
Harfouche, R.2
Sengupta, S.3
-
17
-
-
84879640673
-
Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles
-
[17] Bartczak, D., Muskens, O.L., Sanchez-Elsner, T., et al. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles. ACS Nano 7 (2013), 5628–5636.
-
(2013)
ACS Nano
, vol.7
, pp. 5628-5636
-
-
Bartczak, D.1
Muskens, O.L.2
Sanchez-Elsner, T.3
-
18
-
-
84937501199
-
The rational design of NAMI-A-loaded mesoporous silica nanoparticles as antiangiogenic nanosystems
-
[18] Hu, H., You, Y., He, L., Chen, T., The rational design of NAMI-A-loaded mesoporous silica nanoparticles as antiangiogenic nanosystems. J. Mater. Chem. B 3 (2015), 6338–6346.
-
(2015)
J. Mater. Chem. B
, vol.3
, pp. 6338-6346
-
-
Hu, H.1
You, Y.2
He, L.3
Chen, T.4
-
19
-
-
84952762147
-
Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor
-
[19] Li, X., Wu, M., Pan, L., Shi, J., Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor. Int. J. Nanomed. 11 (2016), 93–105.
-
(2016)
Int. J. Nanomed.
, vol.11
, pp. 93-105
-
-
Li, X.1
Wu, M.2
Pan, L.3
Shi, J.4
-
20
-
-
84902343212
-
Inhibitory activity of gold and silica nanospheres to vascular endothelial growth factor (VEGF)-mediated angiogenesis is determined by their sizes
-
[20] Jo, D.H., Kim, J.H., Son, J.G., et al. Inhibitory activity of gold and silica nanospheres to vascular endothelial growth factor (VEGF)-mediated angiogenesis is determined by their sizes. Nano Res. 7 (2014), 844–852.
-
(2014)
Nano Res.
, vol.7
, pp. 844-852
-
-
Jo, D.H.1
Kim, J.H.2
Son, J.G.3
-
21
-
-
18244396366
-
Antiangiogenic properties of gold nanoparticles
-
[21] Mukherjee, P., Bhattacharya, R., Wang, P., et al. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res. 11 (2005), 3530–3534.
-
(2005)
Clin. Cancer Res.
, vol.11
, pp. 3530-3534
-
-
Mukherjee, P.1
Bhattacharya, R.2
Wang, P.3
-
22
-
-
80053180372
-
Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge
-
[22] Arvizo, R.R., Rana, S., Miranda, O.R., et al. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomed.-Nanotechnol. Biol. Med. 7 (2011), 580–587.
-
(2011)
Nanomed.-Nanotechnol. Biol. Med.
, vol.7
, pp. 580-587
-
-
Arvizo, R.R.1
Rana, S.2
Miranda, O.R.3
-
23
-
-
84903648313
-
165-induced migration and tube formation of endothelial cells via the Akt pathway
-
165-induced migration and tube formation of endothelial cells via the Akt pathway. Biomed. Res. Int. 2014 (2014), 418624–418634.
-
(2014)
Biomed. Res. Int.
, vol.2014
, pp. 418624-418634
-
-
Pan, Y.1
Wu, Q.2
Qin, L.3
-
24
-
-
69649093476
-
Antiangiogenic properties of silver nanoparticles
-
[24] Gurunathan, S., Lee, K.-J., Kalishwaralal, K., et al. Antiangiogenic properties of silver nanoparticles. Biomaterials 30 (2009), 6341–6350.
-
(2009)
Biomaterials
, vol.30
, pp. 6341-6350
-
-
Gurunathan, S.1
Lee, K.-J.2
Kalishwaralal, K.3
-
25
-
-
84896892397
-
Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression
-
[25] Song, H., Wang, W., Zhao, P., et al. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale 6 (2014), 3206–3216.
-
(2014)
Nanoscale
, vol.6
, pp. 3206-3216
-
-
Song, H.1
Wang, W.2
Zhao, P.3
-
26
-
-
84878762944
-
Comparison of anti-angiogenic properties of pristine carbon nanoparticles
-
[26] Wierzbicki, M., Sawosz, E., Grodzik, M., et al. Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Res. Lett. 8 (2013), 195–202.
-
(2013)
Nanoscale Res. Lett.
, vol.8
, pp. 195-202
-
-
Wierzbicki, M.1
Sawosz, E.2
Grodzik, M.3
-
27
-
-
84862593862
-
Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo
-
[27] Grodzik, M., Sawosz, E., Wierzbicki, M., et al. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int. J. Nanomed. 6 (2011), 3041–3048.
-
(2011)
Int. J. Nanomed.
, vol.6
, pp. 3041-3048
-
-
Grodzik, M.1
Sawosz, E.2
Wierzbicki, M.3
-
28
-
-
84903525717
-
Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity
-
[28] Jo, D.H., Kim, J.H., Son, J.G., et al. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomed.-Nanotechnol. Biol. Med. 10 (2014), 1109–1117.
-
(2014)
Nanomed.-Nanotechnol. Biol. Med.
, vol.10
, pp. 1109-1117
-
-
Jo, D.H.1
Kim, J.H.2
Son, J.G.3
-
29
-
-
84887178234
-
Graphene and graphene oxide as new nanocarriers for drug delivery applications
-
[29] Liu, J., Cui, L., Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9 (2013), 9243–9257.
-
(2013)
Acta Biomater.
, vol.9
, pp. 9243-9257
-
-
Liu, J.1
Cui, L.2
Losic, D.3
-
30
-
-
84872114947
-
New horizons for diagnostics and therapeutic applications of graphene and graphene oxide
-
[30] Feng, L., Wu, L., Qu, X., New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 25 (2013), 168–186.
-
(2013)
Adv. Mater.
, vol.25
, pp. 168-186
-
-
Feng, L.1
Wu, L.2
Qu, X.3
-
31
-
-
84979980436
-
Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead
-
[31] Kurapati, R., Kostarelos, K., Prato, M., Bianco, A., Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv. Mater. 28 (2016), 6052–6074.
-
(2016)
Adv. Mater.
, vol.28
, pp. 6052-6074
-
-
Kurapati, R.1
Kostarelos, K.2
Prato, M.3
Bianco, A.4
-
32
-
-
84931289185
-
Probing disease-related proteins with fluorogenic composite materials
-
[32] He, X.-P., Zang, Y., James, T.D., et al. Probing disease-related proteins with fluorogenic composite materials. Chem. Soc. Rev. 13 (2015), 4239–4248.
-
(2015)
Chem. Soc. Rev.
, vol.13
, pp. 4239-4248
-
-
He, X.-P.1
Zang, Y.2
James, T.D.3
-
33
-
-
84953889297
-
Photoluminescence architectures for disease diagnosis: from graphene to thin-layer transition metal dichalcogenides and oxides
-
[33] He, X.-P., Tian, H., Photoluminescence architectures for disease diagnosis: from graphene to thin-layer transition metal dichalcogenides and oxides. Small 12 (2016), 144–160.
-
(2016)
Small
, vol.12
, pp. 144-160
-
-
He, X.-P.1
Tian, H.2
-
34
-
-
84935022317
-
Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating
-
[34] Chong, Y., Ge, C., Yang, Z., et al. Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 9 (2015), 5713–5724.
-
(2015)
ACS Nano
, vol.9
, pp. 5713-5724
-
-
Chong, Y.1
Ge, C.2
Yang, Z.3
-
35
-
-
84908566006
-
Interaction of graphene oxide with human serum albumin and its mechanism
-
[35] Ding, Z., Ma, H., Chen, Y., Interaction of graphene oxide with human serum albumin and its mechanism. RSC Adv. 4 (2014), 55290–55295.
-
(2014)
RSC Adv.
, vol.4
, pp. 55290-55295
-
-
Ding, Z.1
Ma, H.2
Chen, Y.3
-
36
-
-
84934973681
-
Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration
-
[36] Wei, X.-Q., Hao, L.-Y., Shao, X.-R., et al. Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. ACS Appl. Mater. Interfaces 7 (2015), 13367–13374.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 13367-13374
-
-
Wei, X.-Q.1
Hao, L.-Y.2
Shao, X.-R.3
-
37
-
-
84899559800
-
Strong and selective adsorption of lysozyme on graphene oxide
-
[37] Li, S., Mulloor, J.J., Wang, L., et al. Strong and selective adsorption of lysozyme on graphene oxide. ACS Appl. Mater. Interfaces 6 (2014), 5704–5712.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 5704-5712
-
-
Li, S.1
Mulloor, J.J.2
Wang, L.3
-
38
-
-
84943542019
-
Comparative study of serum protein binding to three different carbon-based nanomaterials
-
[38] Sopotnik, M., Leonardi, A., Križaj, I., et al. Comparative study of serum protein binding to three different carbon-based nanomaterials. Carbon 95 (2015), 560–572.
-
(2015)
Carbon
, vol.95
, pp. 560-572
-
-
Sopotnik, M.1
Leonardi, A.2
Križaj, I.3
-
39
-
-
84928583414
-
Impact of graphene oxide on the structure and function of important multiple blood components by a dose-dependent pattern
-
[39] Feng, R., Yu, Y., Shen, C., et al. Impact of graphene oxide on the structure and function of important multiple blood components by a dose-dependent pattern. J. Biomed. Mater. Res. A. 103 (2015), 2006–2014.
-
(2015)
J. Biomed. Mater. Res. A.
, vol.103
, pp. 2006-2014
-
-
Feng, R.1
Yu, Y.2
Shen, C.3
-
40
-
-
84934881013
-
The role of basic residues in the adsorption of blood proteins onto the graphene surface
-
[40] Gu, Z., Yang, Z., Wang, L., et al. The role of basic residues in the adsorption of blood proteins onto the graphene surface. Sci. Rep. 5 (2015), 10873–10884.
-
(2015)
Sci. Rep.
, vol.5
, pp. 10873-10884
-
-
Gu, Z.1
Yang, Z.2
Wang, L.3
-
41
-
-
84901660295
-
Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations
-
[41] Sun, X., Feng, Z., Hou, T., Li, Y., Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations. ACS Appl. Mater. Interfaces 6 (2014), 7153–7163.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 7153-7163
-
-
Sun, X.1
Feng, Z.2
Hou, T.3
Li, Y.4
-
42
-
-
84935848773
-
Graphene oxide selectively enhances thermostability of trypsin
-
[42] Yao, K., Tan, P., Luo, Y., et al. Graphene oxide selectively enhances thermostability of trypsin. ACS Appl. Mater. Interfaces 7 (2015), 12270–12277.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 12270-12277
-
-
Yao, K.1
Tan, P.2
Luo, Y.3
-
43
-
-
80455167966
-
Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin
-
[43] De, M., Chou, S.S., Dravid, V.P., Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin. J. Am. Chem. Soc. 133 (2011), 17524–17527.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 17524-17527
-
-
De, M.1
Chou, S.S.2
Dravid, V.P.3
-
44
-
-
84862852658
-
Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability
-
[44] Jin, L., Yang, K., Yao, K., et al. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano 6 (2012), 4864–4875.
-
(2012)
ACS Nano
, vol.6
, pp. 4864-4875
-
-
Jin, L.1
Yang, K.2
Yao, K.3
-
45
-
-
72249119811
-
VEGF-A: a critical regulator of blood vessel growth
-
[45] Ferrara, N., VEGF-A: a critical regulator of blood vessel growth. Eur. Cytokine Netw. 20 (2009), 158–163.
-
(2009)
Eur. Cytokine Netw.
, vol.20
, pp. 158-163
-
-
Ferrara, N.1
-
46
-
-
0030795733
-
Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site
-
[46] Muller, Y.A., Li, B., Christinger, H.W., et al. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. U. S. A. 94 (1997), 7192–7197.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 7192-7197
-
-
Muller, Y.A.1
Li, B.2
Christinger, H.W.3
-
47
-
-
0032524762
-
Solution structure of the heparin-binding domain of vascular endothelial growth factor
-
[47] Fairbrother, W.J., Champe, M.A., Christinger, H.W., et al. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure 6 (1998), 637–648.
-
(1998)
Structure
, vol.6
, pp. 637-648
-
-
Fairbrother, W.J.1
Champe, M.A.2
Christinger, H.W.3
-
49
-
-
0036964852
-
Lipid hydroperoxide induced corneal neovascularization in hyperglycemic rabbits
-
[49] Higa, A., Nakanishi-Ueda, T., Arai, Y., et al. Lipid hydroperoxide induced corneal neovascularization in hyperglycemic rabbits. Curr. Eye Res. 25 (2002), 49–53.
-
(2002)
Curr. Eye Res.
, vol.25
, pp. 49-53
-
-
Higa, A.1
Nakanishi-Ueda, T.2
Arai, Y.3
-
50
-
-
78650092372
-
Improved synthesis of graphene oxide
-
[50] Marcano, D.C., Kosynkin, D.V., Berlin, J.M., et al. Improved synthesis of graphene oxide. ACS Nano 4 (2010), 4806–4814.
-
(2010)
ACS Nano
, vol.4
, pp. 4806-4814
-
-
Marcano, D.C.1
Kosynkin, D.V.2
Berlin, J.M.3
-
51
-
-
84904597568
-
Classification framework for graphene-based materials
-
[51] Wick, P., Louw-Gaume, A.E., Kucki, M., et al. Classification framework for graphene-based materials. Angew. Chem. Int. Ed. 53 (2014), 2–7.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 2-7
-
-
Wick, P.1
Louw-Gaume, A.E.2
Kucki, M.3
-
52
-
-
84870560935
-
PEGylated graphene oxide-mediated protein delivery for cell function regulation
-
[52] Shen, H., Liu, M., He, H., et al. PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl. Mater. Interfaces 4 (2012), 6317–6323.
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 6317-6323
-
-
Shen, H.1
Liu, M.2
He, H.3
-
53
-
-
34147171490
-
Endothelial cell migration during angiogenesis
-
[53] Lamalice, L., Le Boeuf, F., Huot, J., Endothelial cell migration during angiogenesis. Circ. Res. 100 (2007), 782–794.
-
(2007)
Circ. Res.
, vol.100
, pp. 782-794
-
-
Lamalice, L.1
Le Boeuf, F.2
Huot, J.3
-
54
-
-
79961042374
-
VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation
-
[54] Herzog, B., Pellet-Many, C., Britton, G., et al. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol. Biol. Cell 22 (2011), 2766–2776.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2766-2776
-
-
Herzog, B.1
Pellet-Many, C.2
Britton, G.3
-
55
-
-
0032817965
-
Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo
-
[55] Shimo, T., Nakanishi, T., Nishida, T., et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J. Biochem. 126 (1999), 137–145.
-
(1999)
J. Biochem.
, vol.126
, pp. 137-145
-
-
Shimo, T.1
Nakanishi, T.2
Nishida, T.3
-
56
-
-
33750019223
-
Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. part IV. application of proteomics to the manufacture of biological drugs
-
[56] Zheng, X., Baker, H., Hancock, W.S., et al. Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. part IV. application of proteomics to the manufacture of biological drugs. Biotechnol. Prog. 22 (2006), 1294–1300.
-
(2006)
Biotechnol. Prog.
, vol.22
, pp. 1294-1300
-
-
Zheng, X.1
Baker, H.2
Hancock, W.S.3
-
57
-
-
77958498535
-
Depletion of TGF-β from fetal bovine serum
-
[57] Oida, T., Weiner, H.L., Depletion of TGF-β from fetal bovine serum. J. Immunol. Methods 362 (2010), 195–198.
-
(2010)
J. Immunol. Methods
, vol.362
, pp. 195-198
-
-
Oida, T.1
Weiner, H.L.2
-
58
-
-
21344456550
-
The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents
-
[58] Tufan, A.C., Satiroglu-Tufan, N.L., The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr. Cancer Drug Targets 5 (2005), 249–266.
-
(2005)
Curr. Cancer Drug Targets
, vol.5
, pp. 249-266
-
-
Tufan, A.C.1
Satiroglu-Tufan, N.L.2
-
59
-
-
84949760486
-
Review of the progress in corneal neovascularization animal models
-
[59] Tian, S., Wang, S., He, Y., et al. Review of the progress in corneal neovascularization animal models. Am. J. Biochem. Biotechnol. 11 (2015), 221–227.
-
(2015)
Am. J. Biochem. Biotechnol.
, vol.11
, pp. 221-227
-
-
Tian, S.1
Wang, S.2
He, Y.3
-
60
-
-
84865162915
-
Corneal neovascularization: an anti-VEGF therapy review
-
[60] Chang, J.-H., Garg, N.K., Lunde, E., et al. Corneal neovascularization: an anti-VEGF therapy review. Surv. Ophthalmol. 57 (2012), 415–429.
-
(2012)
Surv. Ophthalmol.
, vol.57
, pp. 415-429
-
-
Chang, J.-H.1
Garg, N.K.2
Lunde, E.3
-
61
-
-
77952550711
-
Corneal melt while using topical bevacizumab eye drops
-
[61] Galor, A., Yoo, S.H., Corneal melt while using topical bevacizumab eye drops. Ophthalmic Surg. Lasers Imag. Retin. 42 (2010), E1–E3.
-
(2010)
Ophthalmic Surg. Lasers Imag. Retin.
, vol.42
, pp. E1-E3
-
-
Galor, A.1
Yoo, S.H.2
-
62
-
-
77955604126
-
The inhibitory effects of bevacizumab eye drops on NGF expression and corneal wound healing in rats
-
[62] Kim, E.C., Lee, W.S., Kim, M.S., The inhibitory effects of bevacizumab eye drops on NGF expression and corneal wound healing in rats. Investig. Ophthalmol. Vis. Sci. 51 (2010), 4569–4573.
-
(2010)
Investig. Ophthalmol. Vis. Sci.
, vol.51
, pp. 4569-4573
-
-
Kim, E.C.1
Lee, W.S.2
Kim, M.S.3
-
63
-
-
0026009911
-
A model for inducing corneal neovoscularizorion
-
[63] Li, W.W., Grayson, G., Folkman, J., D'Amore, P.A., A model for inducing corneal neovoscularizorion. Investig. Ophthalmol. Vis. Sci. 32 (1991), 2906–2911.
-
(1991)
Investig. Ophthalmol. Vis. Sci.
, vol.32
, pp. 2906-2911
-
-
Li, W.W.1
Grayson, G.2
Folkman, J.3
D'Amore, P.A.4
-
64
-
-
34548722080
-
Subconjunctival bevacizumab for corneal neovascularization
-
[64] Erdurmus, M., Totan, Y., Subconjunctival bevacizumab for corneal neovascularization. Graefe's Arch. Clin. Exp. Ophthalmol. 245 (2007), 1577–1579.
-
(2007)
Graefe's Arch. Clin. Exp. Ophthalmol.
, vol.245
, pp. 1577-1579
-
-
Erdurmus, M.1
Totan, Y.2
-
65
-
-
78649315943
-
To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery
-
[65] Danhier, F., Feron, O., Préat, V., To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148 (2010), 135–146.
-
(2010)
J. Control. Release
, vol.148
, pp. 135-146
-
-
Danhier, F.1
Feron, O.2
Préat, V.3
-
66
-
-
84863951606
-
CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity
-
[66] Wang, Z., Li, N., Zhao, J., et al. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem. Res. Toxicol. 25 (2012), 1512–1521.
-
(2012)
Chem. Res. Toxicol.
, vol.25
, pp. 1512-1521
-
-
Wang, Z.1
Li, N.2
Zhao, J.3
-
67
-
-
84901621691
-
Mechanisms of nanotoxicity: generation of reactive oxygen species
-
[67] Fu, P.P., Xia, Q., Hwang, H.-M., et al. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22 (2014), 64–75.
-
(2014)
J. Food Drug Anal.
, vol.22
, pp. 64-75
-
-
Fu, P.P.1
Xia, Q.2
Hwang, H.-M.3
-
68
-
-
84905671650
-
Molecular toxicity of nanomaterials
-
[68] Chang, X.-L., Yang, S.-T., Xing, G., Molecular toxicity of nanomaterials. J. Biomed. Nanotechnol. 10 (2014), 2828–2851.
-
(2014)
J. Biomed. Nanotechnol.
, vol.10
, pp. 2828-2851
-
-
Chang, X.-L.1
Yang, S.-T.2
Xing, G.3
-
69
-
-
84894281997
-
Nanotoxicity of graphene and graphene oxide
-
[69] Seabra, A.B., Paula, A.J., de Lima, R., et al. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27 (2014), 159–168.
-
(2014)
Chem. Res. Toxicol.
, vol.27
, pp. 159-168
-
-
Seabra, A.B.1
Paula, A.J.2
de Lima, R.3
|