메뉴 건너뛰기




Volumn 109, Issue , 2016, Pages 12-22

Ultrastrong trapping of VEGF by graphene oxide: Anti-angiogenesis application

Author keywords

Anti angiogenesis; Blood vessel; Corneal neovascularization; Graphene oxide; Serum albumin; Vascular endothelial growth factor

Indexed keywords

BINDING ENERGY; BLOOD VESSELS; BODY FLUIDS; DISSOCIATION; GRAPHENE; GRAPHENE OXIDE; PATHOLOGY; PLASMA STABILITY; PROTEINS; SODIUM CHLORIDE;

EID: 84988028725     PISSN: 01429612     EISSN: 18785905     Source Type: Journal    
DOI: 10.1016/j.biomaterials.2016.09.005     Document Type: Article
Times cited : (66)

References (69)
  • 1
    • 80052933197 scopus 로고    scopus 로고
    • Basic and therapeutic aspects of angiogenesis
    • [1] Potente, M., Gerhardt, H., Carmeliet, P., Basic and therapeutic aspects of angiogenesis. Cell 146 (2011), 873–887.
    • (2011) Cell , vol.146 , pp. 873-887
    • Potente, M.1    Gerhardt, H.2    Carmeliet, P.3
  • 2
    • 77953988924 scopus 로고    scopus 로고
    • Targeting the tumour vasculature: insights from physiological angiogenesis
    • [2] Chung, A.S., Lee, J., Ferrara, N., Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 10 (2010), 505–514.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 505-514
    • Chung, A.S.1    Lee, J.2    Ferrara, N.3
  • 3
    • 84905381214 scopus 로고    scopus 로고
    • The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis
    • [3] McAllister, S.S., Weinberg, R.A., The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16 (2014), 717–727.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 717-727
    • McAllister, S.S.1    Weinberg, R.A.2
  • 4
    • 81255188940 scopus 로고    scopus 로고
    • Tumor angiogenesis: molecular pathways and therapeutic targets
    • [4] Weis, S.M., Cheresh, D.A., Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17 (2011), 1359–1370.
    • (2011) Nat. Med. , vol.17 , pp. 1359-1370
    • Weis, S.M.1    Cheresh, D.A.2
  • 5
    • 79957902010 scopus 로고    scopus 로고
    • Signal transduction by vascular endothelial growth factor receptors
    • [5] Koch, S., Tugues, S., Li, X., et al. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437 (2011), 169–183.
    • (2011) Biochem. J. , vol.437 , pp. 169-183
    • Koch, S.1    Tugues, S.2    Li, X.3
  • 6
    • 84871633270 scopus 로고    scopus 로고
    • Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases
    • [6] Shibuya, M., Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 153 (2013), 13–19.
    • (2013) J. Biochem. , vol.153 , pp. 13-19
    • Shibuya, M.1
  • 7
    • 33646557055 scopus 로고    scopus 로고
    • Angiogenesis—a new target for future therapy
    • [7] Pandya, N.M., Dhalla, N.S., Santani, D.D., Angiogenesis—a new target for future therapy. Vasc. Pharmacol. 44 (2006), 265–274.
    • (2006) Vasc. Pharmacol. , vol.44 , pp. 265-274
    • Pandya, N.M.1    Dhalla, N.S.2    Santani, D.D.3
  • 8
    • 67349133681 scopus 로고    scopus 로고
    • Angiogenesis and its targeting in rheumatoid arthritis
    • [8] Szekanecz, Z., Koch, A.E., Angiogenesis and its targeting in rheumatoid arthritis. Vasc. Pharmacol. 51 (2009), 1–7.
    • (2009) Vasc. Pharmacol. , vol.51 , pp. 1-7
    • Szekanecz, Z.1    Koch, A.E.2
  • 9
    • 64849116779 scopus 로고    scopus 로고
    • The role of vascular endothelial growth factor in wound healing
    • [9] Bao, P., Kodra, A., Tomic-Canic, M., et al. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 153 (2009), 347–358.
    • (2009) J. Surg. Res. , vol.153 , pp. 347-358
    • Bao, P.1    Kodra, A.2    Tomic-Canic, M.3
  • 10
    • 84896716303 scopus 로고    scopus 로고
    • Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents
    • [10] Limaverde-Sousa, G., Sternberg, C., Ferreira, C.G., Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat. Rev. 40 (2014), 548–557.
    • (2014) Cancer Treat. Rev. , vol.40 , pp. 548-557
    • Limaverde-Sousa, G.1    Sternberg, C.2    Ferreira, C.G.3
  • 11
    • 79952942752 scopus 로고    scopus 로고
    • Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis
    • [11] Bhise, N.S., Shmueli, R.B., Sunshine, J.C., et al. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opin. Drug Deliv. 8 (2011), 485–504.
    • (2011) Expert Opin. Drug Deliv. , vol.8 , pp. 485-504
    • Bhise, N.S.1    Shmueli, R.B.2    Sunshine, J.C.3
  • 12
    • 84869209158 scopus 로고    scopus 로고
    • Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels
    • [12] Asai, T., Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels. Biol. Pharm. Bull. 35 (2012), 1855–1861.
    • (2012) Biol. Pharm. Bull. , vol.35 , pp. 1855-1861
    • Asai, T.1
  • 13
    • 84885573070 scopus 로고    scopus 로고
    • Nanoparticulate drugs for the manipulation of angiogenesis
    • [13] Millar, T.M., Kanaras, A.G., Nanoparticulate drugs for the manipulation of angiogenesis. Ther. Deliv. 4 (2013), 1217–1219.
    • (2013) Ther. Deliv. , vol.4 , pp. 1217-1219
    • Millar, T.M.1    Kanaras, A.G.2
  • 14
    • 84942274908 scopus 로고    scopus 로고
    • Celecoxib nanoparticles for therapeutic angiogenesis
    • [14] Margulis, K., Neofytou, E.A., Beygui, R.E., Zare, R.N., Celecoxib nanoparticles for therapeutic angiogenesis. ACS Nano 9 (2015), 9416–9426.
    • (2015) ACS Nano , vol.9 , pp. 9416-9426
    • Margulis, K.1    Neofytou, E.A.2    Beygui, R.E.3    Zare, R.N.4
  • 15
    • 79960777945 scopus 로고    scopus 로고
    • Antiangiogenic anticancer strategy based on nanoparticulate systems
    • [15] Yoncheva, K., Momekov, G., Antiangiogenic anticancer strategy based on nanoparticulate systems. Expert Opin. Drug Deliv. 8 (2011), 1041–1056.
    • (2011) Expert Opin. Drug Deliv. , vol.8 , pp. 1041-1056
    • Yoncheva, K.1    Momekov, G.2
  • 16
    • 79955622231 scopus 로고    scopus 로고
    • Nanotechnology-mediated targeting of tumor angiogenesis
    • [16] Banerjee, D., Harfouche, R., Sengupta, S., Nanotechnology-mediated targeting of tumor angiogenesis. Vasc. Cell 3 (2011), 3–15.
    • (2011) Vasc. Cell , vol.3 , pp. 3-15
    • Banerjee, D.1    Harfouche, R.2    Sengupta, S.3
  • 17
    • 84879640673 scopus 로고    scopus 로고
    • Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles
    • [17] Bartczak, D., Muskens, O.L., Sanchez-Elsner, T., et al. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles. ACS Nano 7 (2013), 5628–5636.
    • (2013) ACS Nano , vol.7 , pp. 5628-5636
    • Bartczak, D.1    Muskens, O.L.2    Sanchez-Elsner, T.3
  • 18
    • 84937501199 scopus 로고    scopus 로고
    • The rational design of NAMI-A-loaded mesoporous silica nanoparticles as antiangiogenic nanosystems
    • [18] Hu, H., You, Y., He, L., Chen, T., The rational design of NAMI-A-loaded mesoporous silica nanoparticles as antiangiogenic nanosystems. J. Mater. Chem. B 3 (2015), 6338–6346.
    • (2015) J. Mater. Chem. B , vol.3 , pp. 6338-6346
    • Hu, H.1    You, Y.2    He, L.3    Chen, T.4
  • 19
    • 84952762147 scopus 로고    scopus 로고
    • Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor
    • [19] Li, X., Wu, M., Pan, L., Shi, J., Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor. Int. J. Nanomed. 11 (2016), 93–105.
    • (2016) Int. J. Nanomed. , vol.11 , pp. 93-105
    • Li, X.1    Wu, M.2    Pan, L.3    Shi, J.4
  • 20
    • 84902343212 scopus 로고    scopus 로고
    • Inhibitory activity of gold and silica nanospheres to vascular endothelial growth factor (VEGF)-mediated angiogenesis is determined by their sizes
    • [20] Jo, D.H., Kim, J.H., Son, J.G., et al. Inhibitory activity of gold and silica nanospheres to vascular endothelial growth factor (VEGF)-mediated angiogenesis is determined by their sizes. Nano Res. 7 (2014), 844–852.
    • (2014) Nano Res. , vol.7 , pp. 844-852
    • Jo, D.H.1    Kim, J.H.2    Son, J.G.3
  • 21
    • 18244396366 scopus 로고    scopus 로고
    • Antiangiogenic properties of gold nanoparticles
    • [21] Mukherjee, P., Bhattacharya, R., Wang, P., et al. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res. 11 (2005), 3530–3534.
    • (2005) Clin. Cancer Res. , vol.11 , pp. 3530-3534
    • Mukherjee, P.1    Bhattacharya, R.2    Wang, P.3
  • 22
    • 80053180372 scopus 로고    scopus 로고
    • Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge
    • [22] Arvizo, R.R., Rana, S., Miranda, O.R., et al. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomed.-Nanotechnol. Biol. Med. 7 (2011), 580–587.
    • (2011) Nanomed.-Nanotechnol. Biol. Med. , vol.7 , pp. 580-587
    • Arvizo, R.R.1    Rana, S.2    Miranda, O.R.3
  • 23
    • 84903648313 scopus 로고    scopus 로고
    • 165-induced migration and tube formation of endothelial cells via the Akt pathway
    • 165-induced migration and tube formation of endothelial cells via the Akt pathway. Biomed. Res. Int. 2014 (2014), 418624–418634.
    • (2014) Biomed. Res. Int. , vol.2014 , pp. 418624-418634
    • Pan, Y.1    Wu, Q.2    Qin, L.3
  • 24
    • 69649093476 scopus 로고    scopus 로고
    • Antiangiogenic properties of silver nanoparticles
    • [24] Gurunathan, S., Lee, K.-J., Kalishwaralal, K., et al. Antiangiogenic properties of silver nanoparticles. Biomaterials 30 (2009), 6341–6350.
    • (2009) Biomaterials , vol.30 , pp. 6341-6350
    • Gurunathan, S.1    Lee, K.-J.2    Kalishwaralal, K.3
  • 25
    • 84896892397 scopus 로고    scopus 로고
    • Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression
    • [25] Song, H., Wang, W., Zhao, P., et al. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale 6 (2014), 3206–3216.
    • (2014) Nanoscale , vol.6 , pp. 3206-3216
    • Song, H.1    Wang, W.2    Zhao, P.3
  • 26
    • 84878762944 scopus 로고    scopus 로고
    • Comparison of anti-angiogenic properties of pristine carbon nanoparticles
    • [26] Wierzbicki, M., Sawosz, E., Grodzik, M., et al. Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Res. Lett. 8 (2013), 195–202.
    • (2013) Nanoscale Res. Lett. , vol.8 , pp. 195-202
    • Wierzbicki, M.1    Sawosz, E.2    Grodzik, M.3
  • 27
    • 84862593862 scopus 로고    scopus 로고
    • Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo
    • [27] Grodzik, M., Sawosz, E., Wierzbicki, M., et al. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int. J. Nanomed. 6 (2011), 3041–3048.
    • (2011) Int. J. Nanomed. , vol.6 , pp. 3041-3048
    • Grodzik, M.1    Sawosz, E.2    Wierzbicki, M.3
  • 28
    • 84903525717 scopus 로고    scopus 로고
    • Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity
    • [28] Jo, D.H., Kim, J.H., Son, J.G., et al. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomed.-Nanotechnol. Biol. Med. 10 (2014), 1109–1117.
    • (2014) Nanomed.-Nanotechnol. Biol. Med. , vol.10 , pp. 1109-1117
    • Jo, D.H.1    Kim, J.H.2    Son, J.G.3
  • 29
    • 84887178234 scopus 로고    scopus 로고
    • Graphene and graphene oxide as new nanocarriers for drug delivery applications
    • [29] Liu, J., Cui, L., Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9 (2013), 9243–9257.
    • (2013) Acta Biomater. , vol.9 , pp. 9243-9257
    • Liu, J.1    Cui, L.2    Losic, D.3
  • 30
    • 84872114947 scopus 로고    scopus 로고
    • New horizons for diagnostics and therapeutic applications of graphene and graphene oxide
    • [30] Feng, L., Wu, L., Qu, X., New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 25 (2013), 168–186.
    • (2013) Adv. Mater. , vol.25 , pp. 168-186
    • Feng, L.1    Wu, L.2    Qu, X.3
  • 31
    • 84979980436 scopus 로고    scopus 로고
    • Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead
    • [31] Kurapati, R., Kostarelos, K., Prato, M., Bianco, A., Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv. Mater. 28 (2016), 6052–6074.
    • (2016) Adv. Mater. , vol.28 , pp. 6052-6074
    • Kurapati, R.1    Kostarelos, K.2    Prato, M.3    Bianco, A.4
  • 32
    • 84931289185 scopus 로고    scopus 로고
    • Probing disease-related proteins with fluorogenic composite materials
    • [32] He, X.-P., Zang, Y., James, T.D., et al. Probing disease-related proteins with fluorogenic composite materials. Chem. Soc. Rev. 13 (2015), 4239–4248.
    • (2015) Chem. Soc. Rev. , vol.13 , pp. 4239-4248
    • He, X.-P.1    Zang, Y.2    James, T.D.3
  • 33
    • 84953889297 scopus 로고    scopus 로고
    • Photoluminescence architectures for disease diagnosis: from graphene to thin-layer transition metal dichalcogenides and oxides
    • [33] He, X.-P., Tian, H., Photoluminescence architectures for disease diagnosis: from graphene to thin-layer transition metal dichalcogenides and oxides. Small 12 (2016), 144–160.
    • (2016) Small , vol.12 , pp. 144-160
    • He, X.-P.1    Tian, H.2
  • 34
    • 84935022317 scopus 로고    scopus 로고
    • Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating
    • [34] Chong, Y., Ge, C., Yang, Z., et al. Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 9 (2015), 5713–5724.
    • (2015) ACS Nano , vol.9 , pp. 5713-5724
    • Chong, Y.1    Ge, C.2    Yang, Z.3
  • 35
    • 84908566006 scopus 로고    scopus 로고
    • Interaction of graphene oxide with human serum albumin and its mechanism
    • [35] Ding, Z., Ma, H., Chen, Y., Interaction of graphene oxide with human serum albumin and its mechanism. RSC Adv. 4 (2014), 55290–55295.
    • (2014) RSC Adv. , vol.4 , pp. 55290-55295
    • Ding, Z.1    Ma, H.2    Chen, Y.3
  • 36
    • 84934973681 scopus 로고    scopus 로고
    • Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration
    • [36] Wei, X.-Q., Hao, L.-Y., Shao, X.-R., et al. Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. ACS Appl. Mater. Interfaces 7 (2015), 13367–13374.
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 13367-13374
    • Wei, X.-Q.1    Hao, L.-Y.2    Shao, X.-R.3
  • 37
    • 84899559800 scopus 로고    scopus 로고
    • Strong and selective adsorption of lysozyme on graphene oxide
    • [37] Li, S., Mulloor, J.J., Wang, L., et al. Strong and selective adsorption of lysozyme on graphene oxide. ACS Appl. Mater. Interfaces 6 (2014), 5704–5712.
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 5704-5712
    • Li, S.1    Mulloor, J.J.2    Wang, L.3
  • 38
    • 84943542019 scopus 로고    scopus 로고
    • Comparative study of serum protein binding to three different carbon-based nanomaterials
    • [38] Sopotnik, M., Leonardi, A., Križaj, I., et al. Comparative study of serum protein binding to three different carbon-based nanomaterials. Carbon 95 (2015), 560–572.
    • (2015) Carbon , vol.95 , pp. 560-572
    • Sopotnik, M.1    Leonardi, A.2    Križaj, I.3
  • 39
    • 84928583414 scopus 로고    scopus 로고
    • Impact of graphene oxide on the structure and function of important multiple blood components by a dose-dependent pattern
    • [39] Feng, R., Yu, Y., Shen, C., et al. Impact of graphene oxide on the structure and function of important multiple blood components by a dose-dependent pattern. J. Biomed. Mater. Res. A. 103 (2015), 2006–2014.
    • (2015) J. Biomed. Mater. Res. A. , vol.103 , pp. 2006-2014
    • Feng, R.1    Yu, Y.2    Shen, C.3
  • 40
    • 84934881013 scopus 로고    scopus 로고
    • The role of basic residues in the adsorption of blood proteins onto the graphene surface
    • [40] Gu, Z., Yang, Z., Wang, L., et al. The role of basic residues in the adsorption of blood proteins onto the graphene surface. Sci. Rep. 5 (2015), 10873–10884.
    • (2015) Sci. Rep. , vol.5 , pp. 10873-10884
    • Gu, Z.1    Yang, Z.2    Wang, L.3
  • 41
    • 84901660295 scopus 로고    scopus 로고
    • Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations
    • [41] Sun, X., Feng, Z., Hou, T., Li, Y., Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations. ACS Appl. Mater. Interfaces 6 (2014), 7153–7163.
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 7153-7163
    • Sun, X.1    Feng, Z.2    Hou, T.3    Li, Y.4
  • 42
    • 84935848773 scopus 로고    scopus 로고
    • Graphene oxide selectively enhances thermostability of trypsin
    • [42] Yao, K., Tan, P., Luo, Y., et al. Graphene oxide selectively enhances thermostability of trypsin. ACS Appl. Mater. Interfaces 7 (2015), 12270–12277.
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 12270-12277
    • Yao, K.1    Tan, P.2    Luo, Y.3
  • 43
    • 80455167966 scopus 로고    scopus 로고
    • Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin
    • [43] De, M., Chou, S.S., Dravid, V.P., Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin. J. Am. Chem. Soc. 133 (2011), 17524–17527.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 17524-17527
    • De, M.1    Chou, S.S.2    Dravid, V.P.3
  • 44
    • 84862852658 scopus 로고    scopus 로고
    • Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability
    • [44] Jin, L., Yang, K., Yao, K., et al. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano 6 (2012), 4864–4875.
    • (2012) ACS Nano , vol.6 , pp. 4864-4875
    • Jin, L.1    Yang, K.2    Yao, K.3
  • 45
    • 72249119811 scopus 로고    scopus 로고
    • VEGF-A: a critical regulator of blood vessel growth
    • [45] Ferrara, N., VEGF-A: a critical regulator of blood vessel growth. Eur. Cytokine Netw. 20 (2009), 158–163.
    • (2009) Eur. Cytokine Netw. , vol.20 , pp. 158-163
    • Ferrara, N.1
  • 46
    • 0030795733 scopus 로고    scopus 로고
    • Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site
    • [46] Muller, Y.A., Li, B., Christinger, H.W., et al. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. U. S. A. 94 (1997), 7192–7197.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 7192-7197
    • Muller, Y.A.1    Li, B.2    Christinger, H.W.3
  • 47
    • 0032524762 scopus 로고    scopus 로고
    • Solution structure of the heparin-binding domain of vascular endothelial growth factor
    • [47] Fairbrother, W.J., Champe, M.A., Christinger, H.W., et al. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure 6 (1998), 637–648.
    • (1998) Structure , vol.6 , pp. 637-648
    • Fairbrother, W.J.1    Champe, M.A.2    Christinger, H.W.3
  • 48
    • 34249933136 scopus 로고    scopus 로고
    • 165 and PDGF-BB with alginate hydrogels after myocardial infarction
    • 165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75 (2007), 178–185.
    • (2007) Cardiovasc. Res. , vol.75 , pp. 178-185
    • Hao, X.1    Silva, E.A.2    Månsson-Broberg, A.3
  • 49
    • 0036964852 scopus 로고    scopus 로고
    • Lipid hydroperoxide induced corneal neovascularization in hyperglycemic rabbits
    • [49] Higa, A., Nakanishi-Ueda, T., Arai, Y., et al. Lipid hydroperoxide induced corneal neovascularization in hyperglycemic rabbits. Curr. Eye Res. 25 (2002), 49–53.
    • (2002) Curr. Eye Res. , vol.25 , pp. 49-53
    • Higa, A.1    Nakanishi-Ueda, T.2    Arai, Y.3
  • 50
    • 78650092372 scopus 로고    scopus 로고
    • Improved synthesis of graphene oxide
    • [50] Marcano, D.C., Kosynkin, D.V., Berlin, J.M., et al. Improved synthesis of graphene oxide. ACS Nano 4 (2010), 4806–4814.
    • (2010) ACS Nano , vol.4 , pp. 4806-4814
    • Marcano, D.C.1    Kosynkin, D.V.2    Berlin, J.M.3
  • 51
    • 84904597568 scopus 로고    scopus 로고
    • Classification framework for graphene-based materials
    • [51] Wick, P., Louw-Gaume, A.E., Kucki, M., et al. Classification framework for graphene-based materials. Angew. Chem. Int. Ed. 53 (2014), 2–7.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 2-7
    • Wick, P.1    Louw-Gaume, A.E.2    Kucki, M.3
  • 52
    • 84870560935 scopus 로고    scopus 로고
    • PEGylated graphene oxide-mediated protein delivery for cell function regulation
    • [52] Shen, H., Liu, M., He, H., et al. PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl. Mater. Interfaces 4 (2012), 6317–6323.
    • (2012) ACS Appl. Mater. Interfaces , vol.4 , pp. 6317-6323
    • Shen, H.1    Liu, M.2    He, H.3
  • 53
    • 34147171490 scopus 로고    scopus 로고
    • Endothelial cell migration during angiogenesis
    • [53] Lamalice, L., Le Boeuf, F., Huot, J., Endothelial cell migration during angiogenesis. Circ. Res. 100 (2007), 782–794.
    • (2007) Circ. Res. , vol.100 , pp. 782-794
    • Lamalice, L.1    Le Boeuf, F.2    Huot, J.3
  • 54
    • 79961042374 scopus 로고    scopus 로고
    • VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation
    • [54] Herzog, B., Pellet-Many, C., Britton, G., et al. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol. Biol. Cell 22 (2011), 2766–2776.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 2766-2776
    • Herzog, B.1    Pellet-Many, C.2    Britton, G.3
  • 55
    • 0032817965 scopus 로고    scopus 로고
    • Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo
    • [55] Shimo, T., Nakanishi, T., Nishida, T., et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J. Biochem. 126 (1999), 137–145.
    • (1999) J. Biochem. , vol.126 , pp. 137-145
    • Shimo, T.1    Nakanishi, T.2    Nishida, T.3
  • 56
    • 33750019223 scopus 로고    scopus 로고
    • Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. part IV. application of proteomics to the manufacture of biological drugs
    • [56] Zheng, X., Baker, H., Hancock, W.S., et al. Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. part IV. application of proteomics to the manufacture of biological drugs. Biotechnol. Prog. 22 (2006), 1294–1300.
    • (2006) Biotechnol. Prog. , vol.22 , pp. 1294-1300
    • Zheng, X.1    Baker, H.2    Hancock, W.S.3
  • 57
    • 77958498535 scopus 로고    scopus 로고
    • Depletion of TGF-β from fetal bovine serum
    • [57] Oida, T., Weiner, H.L., Depletion of TGF-β from fetal bovine serum. J. Immunol. Methods 362 (2010), 195–198.
    • (2010) J. Immunol. Methods , vol.362 , pp. 195-198
    • Oida, T.1    Weiner, H.L.2
  • 58
    • 21344456550 scopus 로고    scopus 로고
    • The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents
    • [58] Tufan, A.C., Satiroglu-Tufan, N.L., The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr. Cancer Drug Targets 5 (2005), 249–266.
    • (2005) Curr. Cancer Drug Targets , vol.5 , pp. 249-266
    • Tufan, A.C.1    Satiroglu-Tufan, N.L.2
  • 59
    • 84949760486 scopus 로고    scopus 로고
    • Review of the progress in corneal neovascularization animal models
    • [59] Tian, S., Wang, S., He, Y., et al. Review of the progress in corneal neovascularization animal models. Am. J. Biochem. Biotechnol. 11 (2015), 221–227.
    • (2015) Am. J. Biochem. Biotechnol. , vol.11 , pp. 221-227
    • Tian, S.1    Wang, S.2    He, Y.3
  • 60
    • 84865162915 scopus 로고    scopus 로고
    • Corneal neovascularization: an anti-VEGF therapy review
    • [60] Chang, J.-H., Garg, N.K., Lunde, E., et al. Corneal neovascularization: an anti-VEGF therapy review. Surv. Ophthalmol. 57 (2012), 415–429.
    • (2012) Surv. Ophthalmol. , vol.57 , pp. 415-429
    • Chang, J.-H.1    Garg, N.K.2    Lunde, E.3
  • 61
    • 77952550711 scopus 로고    scopus 로고
    • Corneal melt while using topical bevacizumab eye drops
    • [61] Galor, A., Yoo, S.H., Corneal melt while using topical bevacizumab eye drops. Ophthalmic Surg. Lasers Imag. Retin. 42 (2010), E1–E3.
    • (2010) Ophthalmic Surg. Lasers Imag. Retin. , vol.42 , pp. E1-E3
    • Galor, A.1    Yoo, S.H.2
  • 62
    • 77955604126 scopus 로고    scopus 로고
    • The inhibitory effects of bevacizumab eye drops on NGF expression and corneal wound healing in rats
    • [62] Kim, E.C., Lee, W.S., Kim, M.S., The inhibitory effects of bevacizumab eye drops on NGF expression and corneal wound healing in rats. Investig. Ophthalmol. Vis. Sci. 51 (2010), 4569–4573.
    • (2010) Investig. Ophthalmol. Vis. Sci. , vol.51 , pp. 4569-4573
    • Kim, E.C.1    Lee, W.S.2    Kim, M.S.3
  • 64
    • 34548722080 scopus 로고    scopus 로고
    • Subconjunctival bevacizumab for corneal neovascularization
    • [64] Erdurmus, M., Totan, Y., Subconjunctival bevacizumab for corneal neovascularization. Graefe's Arch. Clin. Exp. Ophthalmol. 245 (2007), 1577–1579.
    • (2007) Graefe's Arch. Clin. Exp. Ophthalmol. , vol.245 , pp. 1577-1579
    • Erdurmus, M.1    Totan, Y.2
  • 65
    • 78649315943 scopus 로고    scopus 로고
    • To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery
    • [65] Danhier, F., Feron, O., Préat, V., To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148 (2010), 135–146.
    • (2010) J. Control. Release , vol.148 , pp. 135-146
    • Danhier, F.1    Feron, O.2    Préat, V.3
  • 66
    • 84863951606 scopus 로고    scopus 로고
    • CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity
    • [66] Wang, Z., Li, N., Zhao, J., et al. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem. Res. Toxicol. 25 (2012), 1512–1521.
    • (2012) Chem. Res. Toxicol. , vol.25 , pp. 1512-1521
    • Wang, Z.1    Li, N.2    Zhao, J.3
  • 67
    • 84901621691 scopus 로고    scopus 로고
    • Mechanisms of nanotoxicity: generation of reactive oxygen species
    • [67] Fu, P.P., Xia, Q., Hwang, H.-M., et al. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22 (2014), 64–75.
    • (2014) J. Food Drug Anal. , vol.22 , pp. 64-75
    • Fu, P.P.1    Xia, Q.2    Hwang, H.-M.3
  • 69
    • 84894281997 scopus 로고    scopus 로고
    • Nanotoxicity of graphene and graphene oxide
    • [69] Seabra, A.B., Paula, A.J., de Lima, R., et al. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27 (2014), 159–168.
    • (2014) Chem. Res. Toxicol. , vol.27 , pp. 159-168
    • Seabra, A.B.1    Paula, A.J.2    de Lima, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.