-
1
-
-
84994824862
-
Extract five categories CPIVW from the 9V characteristics of the big data
-
Owais SS, Hussein NS. Extract five categories CPIVW from the 9V characteristics of the big data. Int J Adv Comput Sci Appl 2016, 7:254–258.
-
(2016)
Int J Adv Comput Sci Appl
, vol.7
, pp. 254-258
-
-
Owais, S.S.1
Hussein, N.S.2
-
2
-
-
84890419941
-
Data mining with big data
-
Wu X, Zhu X, Wu GQ, Ding W. Data mining with big data. IEEE Trans Knowl Data Eng 2014, 26:97–107.
-
(2014)
IEEE Trans Knowl Data Eng
, vol.26
, pp. 97-107
-
-
Wu, X.1
Zhu, X.2
Wu, G.Q.3
Ding, W.4
-
3
-
-
84916597404
-
Business intelligence and analytics: from big data to big impact
-
Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to big impact. MIS Q 2012, 36:1165–1188.
-
(2012)
MIS Q
, vol.36
, pp. 1165-1188
-
-
Chen, H.1
Chiang, R.H.L.2
Storey, V.C.3
-
4
-
-
85013916411
-
A survey on platforms for big data analytics
-
Singh D, Reddy CK. A survey on platforms for big data analytics. J Big Data 2014, 2:1–20. doi:10.1186/s40537.014.0008.6.
-
(2014)
J Big Data
, vol.2
, pp. 1-20
-
-
Singh, D.1
Reddy, C.K.2
-
5
-
-
85013880602
-
Big data analytics: a survey
-
Tsai C, Lai C, Chao H, Vasilakos AV. Big data analytics: a survey. J Big Data 2015, 2:1–32. doi:10.1186/s40537.015.0030.3.
-
(2015)
J Big Data
, vol.2
, pp. 1-32
-
-
Tsai, C.1
Lai, C.2
Chao, H.3
Vasilakos, A.V.4
-
7
-
-
84868307166
-
Mad skills: new analysis practices for big data
-
Cohen J, Dolan B, Dunlap M, Hellerstein J, Welton C. Mad skills: new analysis practices for big data. Proc VLDB Endow 2009, 2:1481–1492. doi:10.14778/1687553.1687576.
-
(2009)
Proc VLDB Endow
, vol.2
, pp. 1481-1492
-
-
Cohen, J.1
Dolan, B.2
Dunlap, M.3
Hellerstein, J.4
Welton, C.5
-
9
-
-
84860687282
-
-
(Accessed February 6
-
Borthakur D. HDFS architecture guide. Available at: https://hadoop.apache.org/docs/r1.2.1/hdfsdesign.pdf. (Accessed February 6, 2016).
-
(2016)
HDFS architecture guide.
-
-
Borthakur, D.1
-
10
-
-
84861159329
-
Considerations for big data architecture and approach
-
Big Sky, Montana, US, Mar 3–10
-
Bakshi K. Considerations for big data: architecture and approach. In: Proceedings of the 2012 I.E. Aerospace Conference, Big Sky, Montana, US, Mar 3–10, 2012, 1–7. doi:10.1109/AERO.2012.6187357.
-
(2012)
Proceedings of the 2012 I.E. Aerospace Conference
, pp. 1-7
-
-
Bakshi, K.1
-
12
-
-
84994841669
-
-
(Accessed February 6
-
Roman J. Hadoopecosystemtable. Available at: https://hadoopecosystemtable.github.io. (Accessed February 6, 2016).
-
(2016)
Hadoopecosystemtable.
-
-
Roman, J.1
-
13
-
-
84870358706
-
CAP twelve years later: how the “rules” have changed
-
Brewer E. CAP twelve years later: how the “rules” have changed. Computer 2012, 45:23–29. doi:10.1109/MC.2012.37.
-
(2012)
Computer
, vol.45
, pp. 23-29
-
-
Brewer, E.1
-
14
-
-
84958015133
-
Classification and comparison of NoSQL big data models
-
Sharma S, Tim US, Gadia SK, Wong JS, Shandilya R, Peddoju SK. Classification and comparison of NoSQL big data models. Int J Big Data Intell 2015, 2:201–221.
-
(2015)
Int J Big Data Intell
, vol.2
, pp. 201-221
-
-
Sharma, S.1
Tim, U.S.2
Gadia, S.K.3
Wong, J.S.4
Shandilya, R.5
Peddoju, S.K.6
-
15
-
-
84895140338
-
NoSQL database: new era of databases for big data analytics—classification, characteristics and comparison
-
Moniruzzaman ABM, Hossain SA. NoSQL database: new era of databases for big data analytics—classification, characteristics and comparison. Int J Database Theor Appl 2013, 6:1–14.
-
(2013)
Int J Database Theor Appl
, vol.6
, pp. 1-14
-
-
Moniruzzaman, A.B.M.1
Hossain, S.A.2
-
16
-
-
84994839497
-
NewSQL towards next-generation scalable RDBMS for online transaction processing (OLTP) for big data management
-
Moniruzzaman ABM. NewSQL: towards next-generation scalable RDBMS for online transaction processing (OLTP) for big data management. International Journal of Database Theory & Application 2014, 7:121–130.
-
(2014)
International Journal of Database Theory & Application
, vol.7
, pp. 121-130
-
-
Moniruzzaman, A.B.M.1
-
17
-
-
84994882192
-
Big languages for big data a study and comparison of current trend in data processing techniques for big data
-
TU, Darmstadt, Germany
-
Sundaresan B, Kandavel D. Big languages for big data: a study and comparison of current trend in data processing techniques for big data. In: Design and Implementation of Programming Languages Seminar, TU, Darmstadt, Germany, 2014. doi: 10.13140/2.1.5107.8402.
-
(2014)
Design and Implementation of Programming Languages Seminar
-
-
Sundaresan, B.1
Kandavel, D.2
-
19
-
-
84900797547
-
A survey of large-scale analytical query processing in MapReduce
-
Doulkeridis C, Nørvåg K. A survey of large-scale analytical query processing in MapReduce. VLDB J 2013, 23:355–380. doi:10.1007/s00778.013.0319.9.
-
(2013)
VLDB J
, vol.23
, pp. 355-380
-
-
Doulkeridis, C.1
Nørvåg, K.2
-
20
-
-
85013974691
-
A survey of open source tools for machine learning with big data in the Hadoop ecosystem
-
Landset S, Khoshgoftaar T, Richter A, Hasanin T. A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J Big Data 2015, 2:1–36. doi:10.1186/s40537.015.0032.1.
-
(2015)
J Big Data
, vol.2
, pp. 1-36
-
-
Landset, S.1
Khoshgoftaar, T.2
Richter, A.3
Hasanin, T.4
-
21
-
-
84900815697
-
Fast and interactive analytics over hadoop data with Spark
-
Zaharia M, Chowdhury M, Das T, Dave A, Ma JM, McCauley M, Franklin MJ, Shenker S, Stoica I. Fast and interactive analytics over hadoop data with Spark. USENIX 2012, 37:45–51.
-
(2012)
USENIX
, vol.37
, pp. 45-51
-
-
Zaharia, M.1
Chowdhury, M.2
Das, T.3
Dave, A.4
Ma, J.M.5
McCauley, M.6
Franklin, M.J.7
Shenker, S.8
Stoica, I.9
-
22
-
-
85049129465
-
Beyond batch processing: towards real-time and streaming big data
-
Shahrivari S, Jalili S. Beyond batch processing: towards real-time and streaming big data. Computers 2014, 3:117–129.
-
(2014)
Computers
, vol.3
, pp. 117-129
-
-
Shahrivari, S.1
Jalili, S.2
-
25
-
-
71749094178
-
Parallel K-means clustering based on MapReduce.
-
Springer, Beijing, China
-
Zhao W, Ma H, He Q. Parallel K-means clustering based on MapReduce. In: Proceedings of First International Conference of Cloud Computing (CloudCom), Springer, Beijing, China, 2009, 674–679.
-
(2009)
Proceedings of First International Conference of Cloud Computing (CloudCom)
, pp. 674-679
-
-
Zhao, W.1
Ma, H.2
He, Q.3
-
26
-
-
80051575612
-
Application of parallel K-means clustering algorithm for prediction of optimal path in self aware mobile ad-hoc networks with link stability.
-
Springer, Kochi, India, July 22–24
-
Thomas L, Annappa B. Application of parallel K-means clustering algorithm for prediction of optimal path in self aware mobile ad-hoc networks with link stability. In: Proceedings of First International Conference of Advances in Computing and Communications, Springer, Kochi, India, July 22–24, 2011, 396–405.
-
(2011)
Proceedings of First International Conference of Advances in Computing and Communications
, pp. 396-405
-
-
Thomas, L.1
Annappa, B.2
-
27
-
-
84969135721
-
K-means++ the advantages of careful seeding
-
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
-
Arthur D, Vassilvitskii S. K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '07), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007, 1027–1035.
-
(2007)
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA '07)
, pp. 1027-1035
-
-
Arthur, D.1
Vassilvitskii, S.2
-
28
-
-
84863760691
-
Scalable k-means++
-
Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S. Scalable k-means++. PVLDB 2012, 5:622–633.
-
(2012)
PVLDB
, vol.5
, pp. 622-633
-
-
Bahmani, B.1
Moseley, B.2
Vattani, A.3
Kumar, R.4
Vassilvitskii, S.5
-
29
-
-
84892438289
-
MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data
-
He Y, Tan H, Luo W, Feng S, Fan J. MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data. Front Comput Sci 2014, 8:83–99. doi:10.1007/s11704.013.3158.3.
-
(2014)
Front Comput Sci
, vol.8
, pp. 83-99
-
-
He, Y.1
Tan, H.2
Luo, W.3
Feng, S.4
Fan, J.5
-
30
-
-
84935021924
-
Cludoop: an efficient distributed density-based clustering for big data using Hadoop
-
Yu Y, Zhao J, Wang X, Wang Q, Zhang Y. Cludoop: an efficient distributed density-based clustering for big data using Hadoop. Int J Distr Sensor Network 2015, 2015:1–13. doi:10.1155/2015/579391.
-
(2015)
Int J Distr Sensor Network
, vol.2015
, pp. 1-13
-
-
Yu, Y.1
Zhao, J.2
Wang, X.3
Wang, Q.4
Zhang, Y.5
-
31
-
-
84959533782
-
A scalable hierarchical clustering algorithm using Spark.
-
San Francisco Bay, CA, USA
-
Jin C, Liu R, Chen Z, Hendrix W, Agrawal A, Choudhary A. A scalable hierarchical clustering algorithm using Spark. In: Proceedings of IEEE First International Conference on Big Data Computing Service and Applications (BigDataService), San Francisco Bay, CA, USA, 2015, 418–426. doi: 10.1109/BigDataService.2015.67.
-
(2015)
Proceedings of IEEE First International Conference on Big Data Computing Service and Applications (BigDataService)
, pp. 418-426
-
-
Jin, C.1
Liu, R.2
Chen, Z.3
Hendrix, W.4
Agrawal, A.5
Choudhary, A.6
-
32
-
-
84886291762
-
p-pic: parallel power iteration clustering for big data
-
Yan W, Brahmakshatriya U, Xue Y, Gilder M, Wise B. p-pic: parallel power iteration clustering for big data. J Parallel Distr Comput 2013, 73:352–359.
-
(2013)
J Parallel Distr Comput
, vol.73
, pp. 352-359
-
-
Yan, W.1
Brahmakshatriya, U.2
Xue, Y.3
Gilder, M.4
Wise, B.5
-
33
-
-
84994892278
-
Implementation of p-pic algorithm in MapReduce to handle big data
-
Jayalatchumy D, Thambidurai P. Implementation of p-pic algorithm in MapReduce to handle big data. Int J Res Eng Technol 2014, 3:113–118.
-
(2014)
Int J Res Eng Technol
, vol.3
, pp. 113-118
-
-
Jayalatchumy, D.1
Thambidurai, P.2
-
34
-
-
84946018072
-
CLUS: parallel subspace clustering algorithm on spark
-
In, Poitiers, France
-
Zhu B, Mara A, Mozo A. CLUS: parallel subspace clustering algorithm on spark. In: Proceedings of New Trends in Databases and Information Systems, Poitiers, France, 2015, 175–185.
-
(2015)
Proceedings of New Trends in Databases and Information Systems
, pp. 175-185
-
-
Zhu, B.1
Mara, A.2
Mozo, A.3
-
35
-
-
80052686089
-
Clustering very large multi-dimensional datasets with MapReduce
-
KDD ’11, ACM New York, NY, USA
-
Cordeiro RLF, Traina JC, Traina AJM, Lo'pez J, Kang U, Faloutsos C. Clustering very large multi-dimensional datasets with MapReduce. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, ACM: New York, NY, USA, 2011, 690–698. doi: 10.1145/2020408.2020516.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 690-698
-
-
Cordeiro, R.L.F.1
Traina, J.C.2
Traina, A.J.M.3
Lo'pez, J.4
Kang, U.5
Faloutsos, C.6
-
36
-
-
67149126890
-
Disco distributed co-clustering with map-reduce a case study towards petabyte-scale end-to-end mining
-
ICDM ’08, IEEE Computer Society Washington, DC, USA
-
Papadimitriou S, Sun J. Disco: distributed co-clustering with map-reduce: a case study towards petabyte-scale end-to-end mining. In: Proceedings of the Eighth IEEE International Conference on Data Mining, ICDM ’08, IEEE Computer Society: Washington, DC, USA, 2008, 512–521, doi: 10.1109/ICDM.2008.142.
-
(2008)
Proceedings of the Eighth IEEE International Conference on Data Mining
, pp. 512-521
-
-
Papadimitriou, S.1
Sun, J.2
-
37
-
-
84911388188
-
A MapReduce implementation of C4. 5 decision tree algorithm
-
Dai W, Ji W. A MapReduce implementation of C4. 5 decision tree algorithm. Int J Database Theor Appl 2014, 7:49–60.
-
(2014)
Int J Database Theor Appl
, vol.7
, pp. 49-60
-
-
Dai, W.1
Ji, W.2
-
38
-
-
84938678519
-
MR-tree—a scalable MapReduce algorithm for building decision trees
-
Purdila V, Pentiuc S. MR-tree—a scalable MapReduce algorithm for building decision trees. J Appl Computer Sci Math 2014, 16:16–19.
-
(2014)
J Appl Computer Sci Math
, vol.16
, pp. 16-19
-
-
Purdila, V.1
Pentiuc, S.2
-
39
-
-
84994823780
-
CourboSpark decision tree for time-series on Spark
-
Porto, Portugal
-
Salperwyck C, Maby S, Cubillé J, Lagacherie M. CourboSpark: decision tree for time-series on Spark. In: Proceedings of the 1st International Workshop on Advanced Analytics and Learning on Temporal Data, Porto, Portugal, 2015.
-
(2015)
Proceedings of the 1st International Workshop on Advanced Analytics and Learning on Temporal Data
-
-
Salperwyck, C.1
Maby, S.2
Cubillé, J.3
Lagacherie, M.4
-
40
-
-
84890035503
-
A scalable random forest algorithm based on MapReduce
-
Beijing, China, May 23–25
-
Han J, Liu Y, Sun X. A scalable random forest algorithm based on MapReduce. In: Proceedings of the 4th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, May 23–25, 2013, 849–852. doi: 10.1109/ICSESS.2013.6615438.
-
(2013)
Proceedings of the 4th IEEE International Conference on Software Engineering and Service Science, ICSESS
, pp. 849-852
-
-
Han, J.1
Liu, Y.2
Sun, X.3
-
41
-
-
77955032649
-
Planet: massively parallel learning of tree ensembles with MapReduce
-
Panda B, Herbach J, Basu S, Bayardo RJ. Planet: massively parallel learning of tree ensembles with MapReduce. PVLDB 2009, 2:1426–1437.
-
(2009)
PVLDB
, vol.2
, pp. 1426-1437
-
-
Panda, B.1
Herbach, J.2
Basu, S.3
Bayardo, R.J.4
-
42
-
-
73549086066
-
MReC4.5 C4.5 ensemble classification with MapReduce.
-
Yantai, China, Aug 21–22
-
Wu G, Li H, Hu X, Bi Y, Zhang J, Wu X. MReC4.5: C4.5 ensemble classification with MapReduce. In: Proceedings of the Fourth ChinaGrid Annual Conference, Yantai, China, Aug 21–22, 2009, 249–255. doi: 10.1109/ChinaGrid.2009.39.
-
(2009)
Proceedings of the Fourth ChinaGrid Annual Conference
, pp. 249-255
-
-
Wu, G.1
Li, H.2
Hu, X.3
Bi, Y.4
Zhang, J.5
Wu, X.6
-
43
-
-
84901827682
-
Big data analytics framework for peer-to-peer botnet detection using random forests
-
Singh K, Guntuku SC, Thakur A, Hota C. Big data analytics framework for peer-to-peer botnet detection using random forests. Inform Sci 2014, 278:488–497. doi:10.1016/j.ins.2014.03.066.
-
(2014)
Inform Sci
, vol.278
, pp. 488-497
-
-
Singh, K.1
Guntuku, S.C.2
Thakur, A.3
Hota, C.4
-
44
-
-
84924215936
-
A MapReduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules
-
Río SD, López V, Benítez JM, Herrera F. A MapReduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules. Int J Comput Intell Syst 2015, 8:422–437. doi:10.1080/18756891.2015.1017377.
-
(2015)
Int J Comput Intell Syst
, vol.8
, pp. 422-437
-
-
Río, S.D.1
López, V.2
Benítez, J.M.3
Herrera, F.4
-
45
-
-
84907242272
-
The naive Bayes text classification algorithm based on rough set in the cloud platform
-
Dai Y, Sun H. The naive Bayes text classification algorithm based on rough set in the cloud platform. J Chem Pharmaceut Res 2014, 6:1636–1643.
-
(2014)
J Chem Pharmaceut Res
, vol.6
, pp. 1636-1643
-
-
Dai, Y.1
Sun, H.2
-
46
-
-
84893237676
-
Scalable sentiment classification for big data analysis using naive Bayes classifier
-
, Silicon Valley, CA, USA
-
Liu B, Blasch E, Chen Y, Shen D, Chen G. Scalable sentiment classification for big data analysis using naive Bayes classifier. In: Proceedings of IEEE International Conference on Big Data, Silicon Valley, CA, USA, 2013, 99–104.
-
(2013)
Proceedings of IEEE International Conference on Big Data
, pp. 99-104
-
-
Liu, B.1
Blasch, E.2
Chen, Y.3
Shen, D.4
Chen, G.5
-
47
-
-
84906913368
-
Study on parallel SVM based on MapReduce
-
Las Vegas, NV, USA
-
Sun ZQ, Fox GC. Study on parallel SVM based on MapReduce. In: International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, NV, USA, 2012, 495–561.
-
(2012)
International Conference on Parallel and Distributed Processing Techniques and Applications
, pp. 495-561
-
-
Sun, Z.Q.1
Fox, G.C.2
-
48
-
-
84902257984
-
A MapReduce based parallel SVM for email classification
-
Xu K, Wen C, Yuan Q, He X, Tie J. A MapReduce based parallel SVM for email classification. J Network 2014, 9:1640–1647.
-
(2014)
J Network
, vol.9
, pp. 1640-1647
-
-
Xu, K.1
Wen, C.2
Yuan, Q.3
He, X.4
Tie, J.5
-
49
-
-
84994839983
-
Sentiment analysis based mining and summarizing using SVM- Mapreduce
-
Khairnar J, Kinikar M. Sentiment analysis based mining and summarizing using SVM- Mapreduce. Int J Comput Sci Inform Tech 2014, 5:4081–4085.
-
(2014)
Int J Comput Sci Inform Tech
, vol.5
, pp. 4081-4085
-
-
Khairnar, J.1
Kinikar, M.2
-
50
-
-
84959100718
-
The parallelization of back propagation neural network in MapReduce and Spark
-
Liu Y, Xu L, Li M. The parallelization of back propagation neural network in MapReduce and Spark. Int J Parallel Program 2016, 1–20. doi:10.1007/s10766.016.0401.1.
-
(2016)
Int J Parallel Program
, vol.1-20
-
-
Liu, Y.1
Xu, L.2
Li, M.3
-
51
-
-
84961060829
-
Parallel implementation of multi-layered neural networks based on MapReduce on cloud computing clusters
-
Zhang H, Xiao N. Parallel implementation of multi-layered neural networks based on MapReduce on cloud computing clusters. Soft Comput 2015, 20:1471–1483. doi:10.1007/s00500.015.1599.3.
-
(2015)
Soft Comput
, vol.20
, pp. 1471-1483
-
-
Zhang, H.1
Xiao, N.2
-
52
-
-
84969279001
-
Scalable massively parallel learning of multiple linear regression algorithm with MapReduce
-
Finland, Aug 20–22
-
Rehab MA, Boufarès F. Scalable massively parallel learning of multiple linear regression algorithm with MapReduce. In: IEEE International Conference Trustcom/BigDataSE/ISPA, Helsinki, Finland, Aug 20–22, 2015, 41–47. doi:10.1109/Trustcom.2015.560.
-
(2015)
IEEE International Conference Trustcom/BigDataSE/ISPA, Helsinki
, pp. 41-47
-
-
Rehab, M.A.1
Boufarès, F.2
-
54
-
-
84994866920
-
A new back-propagation neural network algorithm for a big data environment based on punishing characterized active learning strategy
-
Zhao Q, Ye F, Wang S. A new back-propagation neural network algorithm for a big data environment based on punishing characterized active learning strategy. Int J Knowl Syst Sci 2013, 4:32–45. doi:10.4018/ijkss.2013100103.
-
(2013)
Int J Knowl Syst Sci
, vol.4
, pp. 32-45
-
-
Zhao, Q.1
Ye, F.2
Wang, S.3
-
55
-
-
84861705660
-
Mapreduce for parallel reinforcement learning
-
Heidelberg, Germany
-
Li Y, Schuurmans D. Mapreduce for parallel reinforcement learning. In: Proceedings of the 9th European Conference on Recent Advances in Reinforcement Learning, EWRL’11, Springer-Verlag: Berlin, Heidelberg, Germany, 2012, 309–320.
-
(2012)
Proceedings of the 9th European Conference on Recent Advances in Reinforcement Learning, EWRL’11, Springer-Verlag Berlin
, pp. 309-320
-
-
Li, Y.1
Schuurmans, D.2
-
56
-
-
84896117199
-
A parallel framework for Bayesian reinforcement learning
-
Barrett E, Duggan J, Howley E. A parallel framework for Bayesian reinforcement learning. Connection Sci 2014, 26:7–23. doi:10.1080/09540091.2014.885268.
-
(2014)
Connection Sci
, vol.26
, pp. 7-23
-
-
Barrett, E.1
Duggan, J.2
Howley, E.3
-
57
-
-
84923318381
-
Big data deep learning: challenges and perspectives
-
Chen XW, Lin X. Big data deep learning: challenges and perspectives. IEEE Access 2014, 2:514–525. doi:10.1109/ACCESS.2014.2325029.
-
(2014)
IEEE Access
, vol.2
, pp. 514-525
-
-
Chen, X.W.1
Lin, X.2
-
58
-
-
84922788328
-
Large-scale deep belief nets with MapReduce
-
Zhang K, Chen XW. Large-scale deep belief nets with MapReduce. IEEE Access 2014, 2:395–403. doi:10.1109/ACCESS.2014.2319813.
-
(2014)
IEEE Access
, vol.2
, pp. 395-403
-
-
Zhang, K.1
Chen, X.W.2
-
59
-
-
84888286168
-
Handling partitioning skew in MapRe duce using LEEN
-
Ibrahim S, Jin H, Lu L, He B, Antoniu G, Wu S. Handling partitioning skew in MapRe duce using LEEN. Peer-to-Peer Network Appl 2013, 6:409–424. doi:10.1007/s12083.013.0213.7.
-
(2013)
Peer-to-Peer Network Appl
, vol.6
, pp. 409-424
-
-
Ibrahim, S.1
Jin, H.2
Lu, L.3
He, B.4
Antoniu, G.5
Wu, S.6
-
60
-
-
84939219070
-
Libra: lightweight data skew mitigation in MapReduce
-
Chen Q, Yao J, Xiao Z. Libra: lightweight data skew mitigation in MapReduce. IEEE Trans Parallel Distr Syst 2015, 26:2520–2533. doi:10.1109/TPDS.2014.2350972.
-
(2015)
IEEE Trans Parallel Distr Syst
, vol.26
, pp. 2520-2533
-
-
Chen, Q.1
Yao, J.2
Xiao, Z.3
-
62
-
-
84929170243
-
Significance and challenges of big data research
-
Xiaolong J, Benjamin WW, Xueqi C, Yuanzhuo W. Significance and challenges of big data research. Big Data Res 2015, 2:59–64. doi:10.1016/j.bdr.2015.01.006.
-
(2015)
Big Data Res
, vol.2
, pp. 59-64
-
-
Xiaolong, J.1
Benjamin, W.W.2
Xueqi, C.3
Yuanzhuo, W.4
|