메뉴 건너뛰기




Volumn 6, Issue 6, 2016, Pages 194-214

Scalable machine-learning algorithms for big data analytics: a comprehensive review

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; DIGITAL STORAGE; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 84987704255     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1194     Document Type: Review
Times cited : (36)

References (63)
  • 1
    • 84994824862 scopus 로고    scopus 로고
    • Extract five categories CPIVW from the 9V characteristics of the big data
    • Owais SS, Hussein NS. Extract five categories CPIVW from the 9V characteristics of the big data. Int J Adv Comput Sci Appl 2016, 7:254–258.
    • (2016) Int J Adv Comput Sci Appl , vol.7 , pp. 254-258
    • Owais, S.S.1    Hussein, N.S.2
  • 3
    • 84916597404 scopus 로고    scopus 로고
    • Business intelligence and analytics: from big data to big impact
    • Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to big impact. MIS Q 2012, 36:1165–1188.
    • (2012) MIS Q , vol.36 , pp. 1165-1188
    • Chen, H.1    Chiang, R.H.L.2    Storey, V.C.3
  • 4
    • 85013916411 scopus 로고    scopus 로고
    • A survey on platforms for big data analytics
    • Singh D, Reddy CK. A survey on platforms for big data analytics. J Big Data 2014, 2:1–20. doi:10.1186/s40537.014.0008.6.
    • (2014) J Big Data , vol.2 , pp. 1-20
    • Singh, D.1    Reddy, C.K.2
  • 5
    • 85013880602 scopus 로고    scopus 로고
    • Big data analytics: a survey
    • Tsai C, Lai C, Chao H, Vasilakos AV. Big data analytics: a survey. J Big Data 2015, 2:1–32. doi:10.1186/s40537.015.0030.3.
    • (2015) J Big Data , vol.2 , pp. 1-32
    • Tsai, C.1    Lai, C.2    Chao, H.3    Vasilakos, A.V.4
  • 6
    • 84994824865 scopus 로고    scopus 로고
    • Big data analysis: new algorithms for a new society
    • In, Springer International Publishing, Cham
    • Nathalie J, Stefanowski J. Big data analysis: new algorithms for a new society. In: A Machine Learning Perspective on Big Data Analysis. Springer International Publishing: Cham; 2016, 1–31.
    • (2016) A Machine Learning Perspective on Big Data Analysis , pp. 1-31
    • Nathalie, J.1    Stefanowski, J.2
  • 9
    • 84860687282 scopus 로고    scopus 로고
    • (Accessed February 6
    • Borthakur D. HDFS architecture guide. Available at: https://hadoop.apache.org/docs/r1.2.1/hdfsdesign.pdf. (Accessed February 6, 2016).
    • (2016) HDFS architecture guide.
    • Borthakur, D.1
  • 10
    • 84861159329 scopus 로고    scopus 로고
    • Considerations for big data architecture and approach
    • Big Sky, Montana, US, Mar 3–10
    • Bakshi K. Considerations for big data: architecture and approach. In: Proceedings of the 2012 I.E. Aerospace Conference, Big Sky, Montana, US, Mar 3–10, 2012, 1–7. doi:10.1109/AERO.2012.6187357.
    • (2012) Proceedings of the 2012 I.E. Aerospace Conference , pp. 1-7
    • Bakshi, K.1
  • 12
    • 84994841669 scopus 로고    scopus 로고
    • (Accessed February 6
    • Roman J. Hadoopecosystemtable. Available at: https://hadoopecosystemtable.github.io. (Accessed February 6, 2016).
    • (2016) Hadoopecosystemtable.
    • Roman, J.1
  • 13
    • 84870358706 scopus 로고    scopus 로고
    • CAP twelve years later: how the “rules” have changed
    • Brewer E. CAP twelve years later: how the “rules” have changed. Computer 2012, 45:23–29. doi:10.1109/MC.2012.37.
    • (2012) Computer , vol.45 , pp. 23-29
    • Brewer, E.1
  • 15
    • 84895140338 scopus 로고    scopus 로고
    • NoSQL database: new era of databases for big data analytics—classification, characteristics and comparison
    • Moniruzzaman ABM, Hossain SA. NoSQL database: new era of databases for big data analytics—classification, characteristics and comparison. Int J Database Theor Appl 2013, 6:1–14.
    • (2013) Int J Database Theor Appl , vol.6 , pp. 1-14
    • Moniruzzaman, A.B.M.1    Hossain, S.A.2
  • 16
    • 84994839497 scopus 로고    scopus 로고
    • NewSQL towards next-generation scalable RDBMS for online transaction processing (OLTP) for big data management
    • Moniruzzaman ABM. NewSQL: towards next-generation scalable RDBMS for online transaction processing (OLTP) for big data management. International Journal of Database Theory & Application 2014, 7:121–130.
    • (2014) International Journal of Database Theory & Application , vol.7 , pp. 121-130
    • Moniruzzaman, A.B.M.1
  • 17
    • 84994882192 scopus 로고    scopus 로고
    • Big languages for big data a study and comparison of current trend in data processing techniques for big data
    • TU, Darmstadt, Germany
    • Sundaresan B, Kandavel D. Big languages for big data: a study and comparison of current trend in data processing techniques for big data. In: Design and Implementation of Programming Languages Seminar, TU, Darmstadt, Germany, 2014. doi: 10.13140/2.1.5107.8402.
    • (2014) Design and Implementation of Programming Languages Seminar
    • Sundaresan, B.1    Kandavel, D.2
  • 19
    • 84900797547 scopus 로고    scopus 로고
    • A survey of large-scale analytical query processing in MapReduce
    • Doulkeridis C, Nørvåg K. A survey of large-scale analytical query processing in MapReduce. VLDB J 2013, 23:355–380. doi:10.1007/s00778.013.0319.9.
    • (2013) VLDB J , vol.23 , pp. 355-380
    • Doulkeridis, C.1    Nørvåg, K.2
  • 20
    • 85013974691 scopus 로고    scopus 로고
    • A survey of open source tools for machine learning with big data in the Hadoop ecosystem
    • Landset S, Khoshgoftaar T, Richter A, Hasanin T. A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J Big Data 2015, 2:1–36. doi:10.1186/s40537.015.0032.1.
    • (2015) J Big Data , vol.2 , pp. 1-36
    • Landset, S.1    Khoshgoftaar, T.2    Richter, A.3    Hasanin, T.4
  • 22
    • 85049129465 scopus 로고    scopus 로고
    • Beyond batch processing: towards real-time and streaming big data
    • Shahrivari S, Jalili S. Beyond batch processing: towards real-time and streaming big data. Computers 2014, 3:117–129.
    • (2014) Computers , vol.3 , pp. 117-129
    • Shahrivari, S.1    Jalili, S.2
  • 26
    • 80051575612 scopus 로고    scopus 로고
    • Application of parallel K-means clustering algorithm for prediction of optimal path in self aware mobile ad-hoc networks with link stability.
    • Springer, Kochi, India, July 22–24
    • Thomas L, Annappa B. Application of parallel K-means clustering algorithm for prediction of optimal path in self aware mobile ad-hoc networks with link stability. In: Proceedings of First International Conference of Advances in Computing and Communications, Springer, Kochi, India, July 22–24, 2011, 396–405.
    • (2011) Proceedings of First International Conference of Advances in Computing and Communications , pp. 396-405
    • Thomas, L.1    Annappa, B.2
  • 29
    • 84892438289 scopus 로고    scopus 로고
    • MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data
    • He Y, Tan H, Luo W, Feng S, Fan J. MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data. Front Comput Sci 2014, 8:83–99. doi:10.1007/s11704.013.3158.3.
    • (2014) Front Comput Sci , vol.8 , pp. 83-99
    • He, Y.1    Tan, H.2    Luo, W.3    Feng, S.4    Fan, J.5
  • 30
    • 84935021924 scopus 로고    scopus 로고
    • Cludoop: an efficient distributed density-based clustering for big data using Hadoop
    • Yu Y, Zhao J, Wang X, Wang Q, Zhang Y. Cludoop: an efficient distributed density-based clustering for big data using Hadoop. Int J Distr Sensor Network 2015, 2015:1–13. doi:10.1155/2015/579391.
    • (2015) Int J Distr Sensor Network , vol.2015 , pp. 1-13
    • Yu, Y.1    Zhao, J.2    Wang, X.3    Wang, Q.4    Zhang, Y.5
  • 33
    • 84994892278 scopus 로고    scopus 로고
    • Implementation of p-pic algorithm in MapReduce to handle big data
    • Jayalatchumy D, Thambidurai P. Implementation of p-pic algorithm in MapReduce to handle big data. Int J Res Eng Technol 2014, 3:113–118.
    • (2014) Int J Res Eng Technol , vol.3 , pp. 113-118
    • Jayalatchumy, D.1    Thambidurai, P.2
  • 36
    • 67149126890 scopus 로고    scopus 로고
    • Disco distributed co-clustering with map-reduce a case study towards petabyte-scale end-to-end mining
    • ICDM ’08, IEEE Computer Society Washington, DC, USA
    • Papadimitriou S, Sun J. Disco: distributed co-clustering with map-reduce: a case study towards petabyte-scale end-to-end mining. In: Proceedings of the Eighth IEEE International Conference on Data Mining, ICDM ’08, IEEE Computer Society: Washington, DC, USA, 2008, 512–521, doi: 10.1109/ICDM.2008.142.
    • (2008) Proceedings of the Eighth IEEE International Conference on Data Mining , pp. 512-521
    • Papadimitriou, S.1    Sun, J.2
  • 37
    • 84911388188 scopus 로고    scopus 로고
    • A MapReduce implementation of C4. 5 decision tree algorithm
    • Dai W, Ji W. A MapReduce implementation of C4. 5 decision tree algorithm. Int J Database Theor Appl 2014, 7:49–60.
    • (2014) Int J Database Theor Appl , vol.7 , pp. 49-60
    • Dai, W.1    Ji, W.2
  • 38
    • 84938678519 scopus 로고    scopus 로고
    • MR-tree—a scalable MapReduce algorithm for building decision trees
    • Purdila V, Pentiuc S. MR-tree—a scalable MapReduce algorithm for building decision trees. J Appl Computer Sci Math 2014, 16:16–19.
    • (2014) J Appl Computer Sci Math , vol.16 , pp. 16-19
    • Purdila, V.1    Pentiuc, S.2
  • 41
    • 77955032649 scopus 로고    scopus 로고
    • Planet: massively parallel learning of tree ensembles with MapReduce
    • Panda B, Herbach J, Basu S, Bayardo RJ. Planet: massively parallel learning of tree ensembles with MapReduce. PVLDB 2009, 2:1426–1437.
    • (2009) PVLDB , vol.2 , pp. 1426-1437
    • Panda, B.1    Herbach, J.2    Basu, S.3    Bayardo, R.J.4
  • 43
    • 84901827682 scopus 로고    scopus 로고
    • Big data analytics framework for peer-to-peer botnet detection using random forests
    • Singh K, Guntuku SC, Thakur A, Hota C. Big data analytics framework for peer-to-peer botnet detection using random forests. Inform Sci 2014, 278:488–497. doi:10.1016/j.ins.2014.03.066.
    • (2014) Inform Sci , vol.278 , pp. 488-497
    • Singh, K.1    Guntuku, S.C.2    Thakur, A.3    Hota, C.4
  • 44
    • 84924215936 scopus 로고    scopus 로고
    • A MapReduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules
    • Río SD, López V, Benítez JM, Herrera F. A MapReduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules. Int J Comput Intell Syst 2015, 8:422–437. doi:10.1080/18756891.2015.1017377.
    • (2015) Int J Comput Intell Syst , vol.8 , pp. 422-437
    • Río, S.D.1    López, V.2    Benítez, J.M.3    Herrera, F.4
  • 45
    • 84907242272 scopus 로고    scopus 로고
    • The naive Bayes text classification algorithm based on rough set in the cloud platform
    • Dai Y, Sun H. The naive Bayes text classification algorithm based on rough set in the cloud platform. J Chem Pharmaceut Res 2014, 6:1636–1643.
    • (2014) J Chem Pharmaceut Res , vol.6 , pp. 1636-1643
    • Dai, Y.1    Sun, H.2
  • 48
    • 84902257984 scopus 로고    scopus 로고
    • A MapReduce based parallel SVM for email classification
    • Xu K, Wen C, Yuan Q, He X, Tie J. A MapReduce based parallel SVM for email classification. J Network 2014, 9:1640–1647.
    • (2014) J Network , vol.9 , pp. 1640-1647
    • Xu, K.1    Wen, C.2    Yuan, Q.3    He, X.4    Tie, J.5
  • 49
    • 84994839983 scopus 로고    scopus 로고
    • Sentiment analysis based mining and summarizing using SVM- Mapreduce
    • Khairnar J, Kinikar M. Sentiment analysis based mining and summarizing using SVM- Mapreduce. Int J Comput Sci Inform Tech 2014, 5:4081–4085.
    • (2014) Int J Comput Sci Inform Tech , vol.5 , pp. 4081-4085
    • Khairnar, J.1    Kinikar, M.2
  • 50
    • 84959100718 scopus 로고    scopus 로고
    • The parallelization of back propagation neural network in MapReduce and Spark
    • Liu Y, Xu L, Li M. The parallelization of back propagation neural network in MapReduce and Spark. Int J Parallel Program 2016, 1–20. doi:10.1007/s10766.016.0401.1.
    • (2016) Int J Parallel Program , vol.1-20
    • Liu, Y.1    Xu, L.2    Li, M.3
  • 51
    • 84961060829 scopus 로고    scopus 로고
    • Parallel implementation of multi-layered neural networks based on MapReduce on cloud computing clusters
    • Zhang H, Xiao N. Parallel implementation of multi-layered neural networks based on MapReduce on cloud computing clusters. Soft Comput 2015, 20:1471–1483. doi:10.1007/s00500.015.1599.3.
    • (2015) Soft Comput , vol.20 , pp. 1471-1483
    • Zhang, H.1    Xiao, N.2
  • 52
    • 84969279001 scopus 로고    scopus 로고
    • Scalable massively parallel learning of multiple linear regression algorithm with MapReduce
    • Finland, Aug 20–22
    • Rehab MA, Boufarès F. Scalable massively parallel learning of multiple linear regression algorithm with MapReduce. In: IEEE International Conference Trustcom/BigDataSE/ISPA, Helsinki, Finland, Aug 20–22, 2015, 41–47. doi:10.1109/Trustcom.2015.560.
    • (2015) IEEE International Conference Trustcom/BigDataSE/ISPA, Helsinki , pp. 41-47
    • Rehab, M.A.1    Boufarès, F.2
  • 54
    • 84994866920 scopus 로고    scopus 로고
    • A new back-propagation neural network algorithm for a big data environment based on punishing characterized active learning strategy
    • Zhao Q, Ye F, Wang S. A new back-propagation neural network algorithm for a big data environment based on punishing characterized active learning strategy. Int J Knowl Syst Sci 2013, 4:32–45. doi:10.4018/ijkss.2013100103.
    • (2013) Int J Knowl Syst Sci , vol.4 , pp. 32-45
    • Zhao, Q.1    Ye, F.2    Wang, S.3
  • 56
    • 84896117199 scopus 로고    scopus 로고
    • A parallel framework for Bayesian reinforcement learning
    • Barrett E, Duggan J, Howley E. A parallel framework for Bayesian reinforcement learning. Connection Sci 2014, 26:7–23. doi:10.1080/09540091.2014.885268.
    • (2014) Connection Sci , vol.26 , pp. 7-23
    • Barrett, E.1    Duggan, J.2    Howley, E.3
  • 57
    • 84923318381 scopus 로고    scopus 로고
    • Big data deep learning: challenges and perspectives
    • Chen XW, Lin X. Big data deep learning: challenges and perspectives. IEEE Access 2014, 2:514–525. doi:10.1109/ACCESS.2014.2325029.
    • (2014) IEEE Access , vol.2 , pp. 514-525
    • Chen, X.W.1    Lin, X.2
  • 58
    • 84922788328 scopus 로고    scopus 로고
    • Large-scale deep belief nets with MapReduce
    • Zhang K, Chen XW. Large-scale deep belief nets with MapReduce. IEEE Access 2014, 2:395–403. doi:10.1109/ACCESS.2014.2319813.
    • (2014) IEEE Access , vol.2 , pp. 395-403
    • Zhang, K.1    Chen, X.W.2
  • 60
    • 84939219070 scopus 로고    scopus 로고
    • Libra: lightweight data skew mitigation in MapReduce
    • Chen Q, Yao J, Xiao Z. Libra: lightweight data skew mitigation in MapReduce. IEEE Trans Parallel Distr Syst 2015, 26:2520–2533. doi:10.1109/TPDS.2014.2350972.
    • (2015) IEEE Trans Parallel Distr Syst , vol.26 , pp. 2520-2533
    • Chen, Q.1    Yao, J.2    Xiao, Z.3
  • 62
    • 84929170243 scopus 로고    scopus 로고
    • Significance and challenges of big data research
    • Xiaolong J, Benjamin WW, Xueqi C, Yuanzhuo W. Significance and challenges of big data research. Big Data Res 2015, 2:59–64. doi:10.1016/j.bdr.2015.01.006.
    • (2015) Big Data Res , vol.2 , pp. 59-64
    • Xiaolong, J.1    Benjamin, W.W.2    Xueqi, C.3    Yuanzhuo, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.