메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5975-5984

Recovering the missing link: Predicting class-attribute associations for unsupervised zero-shot learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; FORECASTING;

EID: 84986268135     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.643     Document Type: Conference Paper
Times cited : (113)

References (42)
  • 1
    • 84904189003 scopus 로고    scopus 로고
    • 5
    • Bing Search API. https: //datamarket. Azure. com/dataset/bing/search.
    • Bing Search API
  • 2
    • 79951761618 scopus 로고    scopus 로고
    • 5
    • Flickr API. https: //www.flickr. com/services/api/flickr. photos. search.html.
    • Flickr API
  • 3
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • 2, 8
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of Output Embeddings for Fine-Grained Image Classification. In CVPR, 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 5
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • 2
    • J. L. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting Deep Zero-Shot Convolutional Neural Networks using Textual Descriptions. In ICCV, 2015.
    • (2015) ICCV
    • Ba, J.L.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 6
    • 84898411890 scopus 로고    scopus 로고
    • Single-example learning of novel classes using representation by similarity
    • 1, 6
    • E. Bart and S. Ullman. Single-example learning of novel classes using representation by similarity. In BMVC, 2005.
    • (2005) BMVC
    • Bart, E.1    Ullman, S.2
  • 7
    • 0023322501 scopus 로고
    • Recognition by components: A theory of human image understanding
    • 1
    • I. Biederman. Recognition by components: A theory of human image understanding. Psychological Review, 1987.
    • (1987) Psychological Review
    • Biederman, I.1
  • 8
    • 75149188375 scopus 로고    scopus 로고
    • Twin Gaussian processes for structured prediction
    • 8
    • L. Bo and C. Sminchisescu. Twin Gaussian processes for structured prediction. IJCV, 2010.
    • (2010) IJCV
    • Bo, L.1    Sminchisescu, C.2
  • 9
    • 84959194731 scopus 로고    scopus 로고
    • Deep domain adaptation for describing people based on fine-grained clothing attributes
    • 2
    • Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and S. Yan. Deep Domain Adaptation for Describing People Based on Fine-Grained Clothing Attributes. In CVPR, 2015.
    • (2015) CVPR
    • Chen, Q.1    Huang, J.2    Feris, R.3    Brown, L.M.4    Dong, J.5    Yan, S.6
  • 11
    • 84898803425 scopus 로고    scopus 로고
    • Write a classifier: Zero-shot learning using purely textual descriptions
    • 2, 8
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Write a Classifier: Zero-Shot Learning Using Purely Textual Descriptions. In ICCV, 2013.
    • (2013) ICCV
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 12
    • 84959190514 scopus 로고    scopus 로고
    • On the relationship between visual attributes and convolutional networks
    • 2
    • V. Escorcia, J. C. Niebles, and B. Ghanem. On the Relationship between Visual Attributes and Convolutional Networks. In CVPR, 2015.
    • (2015) CVPR
    • Escorcia, V.1    Niebles, J.C.2    Ghanem, B.3
  • 16
    • 85161970171 scopus 로고    scopus 로고
    • Learning visual attributes
    • 2
    • V. Ferrari and A. Zisserman. Learning Visual Attributes. In NIPS, 2008.
    • (2008) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 18
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • 2
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive Multi-view Embedding for Zero-Shot Recognition and Annotation. In ECCV, 2014.
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 20
    • 84877742658 scopus 로고    scopus 로고
    • A latent factor model for highly multi-relational data
    • 4
    • R. Jenatton, A. Bordes, N. L. Roux, and G. Obozinski. A Latent Factor Model for Highly Multi-relational Data. In NIPS, 2012.
    • (2012) NIPS
    • Jenatton, R.1    Bordes, A.2    Roux, N.L.3    Obozinski, G.4
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • 1
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 23
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • 1, 2, 5
    • C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 24
    • 84925402963 scopus 로고    scopus 로고
    • Attribute-based classification for zero-shot visual object categorization
    • 4, 6, 7
    • C. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. TPAMI, 2013.
    • (2013) TPAMI
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 25
    • 80052915325 scopus 로고    scopus 로고
    • Recognizing human actions by attributes
    • 1, 2
    • J. Liu, B. Kuipers, and S. Savarese. Recognizing Human Actions by Attributes. In CVPR, 2011.
    • (2011) CVPR
    • Liu, J.1    Kuipers, B.2    Savarese, S.3
  • 26
    • 84911410734 scopus 로고    scopus 로고
    • COSTA: Co-occurrence statistics for zero-shot classification
    • 2, 5, 7
    • T. Mensink, E. Gavves, and C. G. M. Snoek. COSTA: Co-Occurrence Statistics for Zero-Shot Classification. In CVPR, 2014.
    • (2014) CVPR
    • Mensink, T.1    Gavves, E.2    Snoek, C.G.M.3
  • 28
    • 84976702763 scopus 로고
    • WordNet: A lexical database for english
    • 2, 8
    • G. A. Miller. WordNet: A Lexical Database for English. Communications of the ACM Vol. 38, No. 11: 39-41., 1995.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 32
    • 84899001511 scopus 로고    scopus 로고
    • Transfer learning in a transductive setting
    • 2
    • M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In NIPS, 2013.
    • (2013) NIPS
    • Rohrbach, M.1    Ebert, S.2    Schiele, B.3
  • 33
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a large-scale setting
    • 1, 2, 8
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating Knowledge Transfer and Zero-Shot Learning in a Large-Scale Setting. In CVPR, 2011.
    • (2011) CVPR
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 34
    • 77955989949 scopus 로고    scopus 로고
    • What helps where-and why semantic relatedness for knowledge transfer
    • 2, 5, 7
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What Helps Where-And Why Semantic Relatedness for Knowledge Transfer. In CVPR, 2010.
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 35
    • 84887384357 scopus 로고    scopus 로고
    • Its not polite to point: Describing people with uncertain attributes
    • 2
    • A. Sadovnik, A. Gallagher, and T. Chen. Its Not Polite To Point: Describing People With Uncertain Attributes. In CVPR, 2013.
    • (2013) CVPR
    • Sadovnik, A.1    Gallagher, A.2    Chen, T.3
  • 36
    • 84887349920 scopus 로고    scopus 로고
    • Object-centric anomaly detection by attribute-based reasoning
    • 2
    • B. Saleh, A. Farhadi, and A. Elgammal. Object-Centric Anomaly Detection by Attribute-Based Reasoning. In CVPR, 2013.
    • (2013) CVPR
    • Saleh, B.1    Farhadi, A.2    Elgammal, A.3
  • 37
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • 2
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng. Zero-Shot Learning Through Cross-Modal Transfer. In NIPS, 2013.
    • (2013) NIPS
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.Y.4
  • 38
    • 84858720748 scopus 로고    scopus 로고
    • Modelling relational data using Bayesian clustered tensor factorization
    • 4
    • I. Sutskever, J. B. Tenenbaum, and R. R. Salakhutdinov. Modelling Relational Data using Bayesian Clustered Tensor Factorization. In NIPS, 2009.
    • (2009) NIPS
    • Sutskever, I.1    Tenenbaum, J.B.2    Salakhutdinov, R.R.3
  • 42
    • 84887368641 scopus 로고    scopus 로고
    • Designing category-level attributes for discriminative visual recognition
    • 2
    • F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Designing Category-Level Attributes for Discriminative Visual Recognition. In CVPR, 2013.
    • (2013) CVPR
    • Yu, F.X.1    Cao, L.2    Feris, R.S.3    Smith, J.R.4    Chang, S.-F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.