메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1942-1950

Learning Activity Progression in LSTMs for Activity Detection and Early Detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; RECURRENT NEURAL NETWORKS;

EID: 84986254033     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.214     Document Type: Conference Paper
Times cited : (437)

References (28)
  • 1
    • 84856661125 scopus 로고    scopus 로고
    • Learning spatiotemporal graphs of human activities
    • W. Brendel and S. Todorovic. Learning spatiotemporal graphs of human activities. In ICCV, 2011.
    • (2011) ICCV
    • Brendel, W.1    Todorovic, S.2
  • 2
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 32(9):1627-1645, 2010.
    • (2010) TPAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.A.3    Ramanan, D.4
  • 3
    • 84959196122 scopus 로고    scopus 로고
    • Finding action tubes
    • G. Gkioxari and J. Malik. Finding action tubes. In CVPR, 2015.
    • (2015) CVPR
    • Gkioxari, G.1    Malik, J.2
  • 4
    • 84959216468 scopus 로고    scopus 로고
    • Activitynet: A large-scale video benchmark for human activity understanding
    • F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In CVPR, 2015.
    • (2015) CVPR
    • Heilbron, F.C.1    Escorcia, V.2    Ghanem, B.3    Niebles, J.C.4
  • 5
    • 84897108420 scopus 로고    scopus 로고
    • Max-margin early event detectors
    • M. Hoai and F. De la Torre. Max-margin early event detectors. IJCV, 107(2):191-202, 2014.
    • (2014) IJCV , vol.107 , Issue.2 , pp. 191-202
    • Hoai, M.1    De La Torre, F.2
  • 6
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition. TPAMI, 35(1):221-231, 2013.
    • (2013) TPAMI , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 8
    • 50649103739 scopus 로고    scopus 로고
    • Event detection in crowded videos
    • Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In ICCV, 2007.
    • (2007) ICCV
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 9
    • 85044519129 scopus 로고    scopus 로고
    • Max-margin action prediction machine
    • Y. Kong and Y. Fu. Max-margin action prediction machine. TPAMI, PP(99):1-1, 2015.
    • (2015) TPAMI , vol.99 , pp. 1
    • Kong, Y.1    Fu, Y.2
  • 10
    • 84863083227 scopus 로고    scopus 로고
    • Discriminative figure-centric models for joint action localization and recognition
    • T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric models for joint action localization and recognition. In ICCV, 2011.
    • (2011) ICCV
    • Lan, T.1    Wang, Y.2    Mori, G.3
  • 12
    • 84959195747 scopus 로고    scopus 로고
    • Space-time tree ensemble for action recognition
    • S. Ma, L. Sigal, and S. Sclaroff. Space-time tree ensemble for action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Ma, S.1    Sigal, L.2    Sclaroff, S.3
  • 13
    • 84898783317 scopus 로고    scopus 로고
    • Action recognition and localization by hierarchical space-time segments
    • S. Ma, J. Zhang, N. Ikizler-Cinbis, and S. Sclaroff. Action recognition and localization by hierarchical space-time segments. In ICCV, 2013.
    • (2013) ICCV
    • Ma, S.1    Zhang, J.2    Ikizler-Cinbis, N.3    Sclaroff, S.4
  • 15
    • 84911397627 scopus 로고    scopus 로고
    • Multiple granularity analysis for fine-grained action detection
    • B. Ni, V. R. Paramathayalan, and P. Moulin. Multiple granularity analysis for fine-grained action detection. In CVPR, 2014.
    • (2014) CVPR
    • Ni, B.1    Paramathayalan, V.R.2    Moulin, P.3
  • 16
    • 84910659437 scopus 로고    scopus 로고
    • Dropout improves recurrent neural networks for handwriting recognition
    • V. Pham, C. Kermorvant, and J. Louradour. Dropout improves recurrent neural networks for handwriting recognition. CoRR, 2013.
    • (2013) CoRR
    • Pham, V.1    Kermorvant, C.2    Louradour, J.3
  • 17
    • 84887345098 scopus 로고    scopus 로고
    • Poselet key-framing: A model for human activity recognition
    • M. Raptis and L. Sigal. Poselet key-framing: A model for human activity recognition. In CVPR, 2013.
    • (2013) CVPR
    • Raptis, M.1    Sigal, L.2
  • 18
    • 85009854137 scopus 로고    scopus 로고
    • Recognizing fine-grained and composite activities using hand-centric features and script data
    • abs/1502.06648
    • M. Rohrbach, A. Rohrbach, M. Regneri, S. Amin, M. Andriluka, M. Pinkal, and B. Schiele. Recognizing fine-grained and composite activities using hand-centric features and script data. CoRR, abs/1502.06648, 2015.
    • (2015) CoRR
    • Rohrbach, M.1    Rohrbach, A.2    Regneri, M.3    Amin, S.4    Andriluka, M.5    Pinkal, M.6    Schiele, B.7
  • 19
    • 84856688144 scopus 로고    scopus 로고
    • Human activity prediction: Early recognition of ongoing activities from streaming videos
    • M. Ryoo. Human activity prediction: Early recognition of ongoing activities from streaming videos. In ICCV, 2011.
    • (2011) ICCV
    • Ryoo, M.1
  • 20
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 21
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 22
    • 84887356306 scopus 로고    scopus 로고
    • Spatiotemporal deformable part models for action detection
    • Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part models for action detection. In CVPR, 2013.
    • (2013) CVPR
    • Tian, Y.1    Sukthankar, R.2    Shah, M.3
  • 23
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 24
    • 84959205018 scopus 로고    scopus 로고
    • Video action detection with relational dynamic-poselets
    • L. Wang, Y. Qiao, and X. Tang. Video action detection with relational dynamic-poselets. In ECCV, 2014.
    • (2014) ECCV
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 25
    • 79957467077 scopus 로고    scopus 로고
    • Hidden part models for human action recognition: Probabilistic versus max margin
    • Y. Wang and G. Mori. Hidden part models for human action recognition: Probabilistic versus max margin. TPAMI, 33(7):1310-1323, 2011.
    • (2011) TPAMI , vol.33 , Issue.7 , pp. 1310-1323
    • Wang, Y.1    Mori, G.2
  • 26
    • 84963675700 scopus 로고    scopus 로고
    • Modeling spatial-temporal clues in a hybrid deep learning framework for video classification
    • abs/1504.01561
    • Z. Wu, X. Wang, Y. Jiang, H. Ye, and X. Xue. Modeling spatial-temporal clues in a hybrid deep learning framework for video classification. CoRR, abs/1504.01561, 2015.
    • (2015) CoRR
    • Wu, Z.1    Wang, X.2    Jiang, Y.3    Ye, H.4    Xue, X.5
  • 27
    • 84977668095 scopus 로고    scopus 로고
    • Every moment counts: Dense detailed labeling of actions in complex videos
    • S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and F. Li. Every moment counts: Dense detailed labeling of actions in complex videos. CoRR, 2015.
    • (2015) CoRR
    • Yeung, S.1    Russakovsky, O.2    Jin, N.3    Andriluka, M.4    Mori, G.5    Li, F.6
  • 28
    • 70450164163 scopus 로고    scopus 로고
    • Discriminative subvolume search for efficient action detection
    • J. Yuan, Z. Liu, and Y.Wu. Discriminative subvolume search for efficient action detection. In CVPR, 2009.
    • (2009) CVPR
    • Yuan, J.1    Liu, Z.2    Wu, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.