메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Ultra-narrow metallic armchair graphene nanoribbons

Author keywords

[No Author keywords available]

Indexed keywords

BENZENE; GRAPHENE NANORIBBON; METAL; MONOMER; NANORIBBON; UNCLASSIFIED DRUG;

EID: 84985960338     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms10177     Document Type: Article
Times cited : (432)

References (42)
  • 1
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008).
    • (2008) Science , vol.319 , pp. 1229-1232
    • Li, X.L.1    Wang, X.R.2    Zhang, L.3    Lee, S.W.4    Dai, H.J.5
  • 2
    • 84869062823 scopus 로고    scopus 로고
    • Voltage-dependent conductance of a single graphene nanoribbon
    • Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713-717 (2012).
    • (2012) Nat. Nanotechnol , vol.7 , pp. 713-717
    • Koch, M.1    Ample, F.2    Joachim, C.3    Grill, L.4
  • 3
    • 84927749688 scopus 로고    scopus 로고
    • Quantum nonlocal effects in individual and interacting graphene nanoribbons
    • Silveiro, I., Ortega, J. M. P. & de Abajo, F. G. Quantum nonlocal effects in individual and interacting graphene nanoribbons. Light. Sci. Appl. 4, e241 (2015).
    • (2015) Light. Sci. Appl , vol.4 , pp. e241
    • Silveiro, I.1    Ortega, J.M.P.2    De Abajo, F.G.3
  • 4
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    • Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954-17961 (1996).
    • (1996) Phys. Rev , vol.B 54 , pp. 17954-17961
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.S.4
  • 5
    • 0000703370 scopus 로고    scopus 로고
    • Electronic and magnetic properties of nanographite ribbons
    • Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271-8282 (1999).
    • (1999) Phys., Rev , vol.B 59 , pp. 8271-8282
    • Wakabayashi, K.1    Fujita, M.2    Ajiki, H.3    Sigrist, M.4
  • 6
    • 33751110207 scopus 로고    scopus 로고
    • Half-metallic graphene nanoribbons
    • Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347-349 (2006).
    • (2006) Nature , vol.444 , pp. 347-349
    • Son, Y.-W.1    Cohen, M.L.2    Louie, S.G.3
  • 8
    • 33846361065 scopus 로고    scopus 로고
    • Electronic structure and stability of semiconducting graphene nanoribbons
    • Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748-2754 (2006).
    • (2006) Nano Lett , vol.6 , pp. 2748-2754
    • Barone, V.1    Hod, O.2    Scuseria, G.E.3
  • 9
    • 84880640121 scopus 로고    scopus 로고
    • A guide to the design of electronic properties of graphene nanoribbons
    • Yazyev, O. V. A guide to the design of electronic properties of graphene nanoribbons. Acc. Chem. Res. 46, 2319-2328 (2013).
    • (2013) Acc. Chem. Res , vol.46 , pp. 2319-2328
    • Yazyev, O.V.1
  • 10
    • 77950857180 scopus 로고    scopus 로고
    • Emergence of magnetism in graphene materials and nanostructures
    • Yazyev, O. V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).
    • (2010) Rep. Prog. Phys , vol.73 , pp. 056501
    • Yazyev, O.V.1
  • 11
    • 35948971778 scopus 로고    scopus 로고
    • Quasiparticle energies and band gaps in graphene nanoribbons
    • Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
    • (2007) Phys. Rev. Lett , vol.99 , pp. 186801
    • Yang, L.1    Park, C.-H.2    Son, Y.-W.3    Cohen, M.L.4    Louie, S.G.5
  • 12
    • 33845627673 scopus 로고    scopus 로고
    • Electronic states of graphene nanoribbons studied with the Dirac equation
    • Brey, L. & Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006).
    • (2006) Phys. Rev , vol.B 73 , pp. 235411
    • Brey, L.1    Fertig, H.A.2
  • 13
    • 33144487433 scopus 로고    scopus 로고
    • Peculiar width dependence of the electronic properties of carbon nanoribbons
    • Ezawa, M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 73, 045432 (2006).
    • (2006) Phys. Rev , vol.B 73 , pp. 045432
    • Ezawa, M.1
  • 14
    • 77954904482 scopus 로고    scopus 로고
    • Atomically precise bottom-up fabrication of graphene nanoribbons
    • Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470-473 (2010).
    • (2010) Nature , vol.466 , pp. 470-473
    • Cai, J.1
  • 15
    • 84872863401 scopus 로고    scopus 로고
    • Experimentally engineering the edge termination of graphene nanoribbons
    • Zhang, X. et al. Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano 7, 198-202 (2013).
    • (2013) ACS, Nano , vol.7 , pp. 198-202
    • Zhang, X.1
  • 16
    • 84859150664 scopus 로고    scopus 로고
    • Intraribbon heterojunction formation in ultranarrow graphene nanoribbons
    • Blankenburg, S. et al. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6, 2020-2025 (2012).
    • (2012) ACS Nano , vol.6 , pp. 2020-2025
    • Blankenburg, S.1
  • 17
    • 84876246261 scopus 로고    scopus 로고
    • Aligning the band gap of graphene nanoribbons by monomer doping
    • Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52, 4422-4425 (2013).
    • Angew. Chem, Int. Ed , pp. 4422-4425
    • Bronner, C.1
  • 18
    • 84880782130 scopus 로고    scopus 로고
    • Tuning the band gap of graphene nanoribbons synthesized from molecular precursors
    • Chen, Y.-C. et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123-6128 (2013).
    • (2013) ACS Nano , vol.7 , pp. 6123-6128
    • Chen, Y.-C.1
  • 19
    • 84879627381 scopus 로고    scopus 로고
    • Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom
    • van der Lit, J. et al. Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom. Nat. Commun. 4, 2023 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 2023
    • Van Der Lit, J.1
  • 20
    • 84909945643 scopus 로고    scopus 로고
    • Graphene nanoribbon heterojunctions
    • Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896-900 (2014).
    • (2014) Nat. Nanotechnol , vol.9 , pp. 896-900
    • Cai, J.1
  • 21
    • 84926076568 scopus 로고    scopus 로고
    • Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions
    • Chen, Y.-C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156-160 (2015).
    • (2015) Nat. Nanotechnol , vol.10 , pp. 156-160
    • Chen, Y.-C.1
  • 22
    • 84926283681 scopus 로고    scopus 로고
    • On-surface synthesis of rylene-Type graphene nanoribbons
    • Zhang, H. et al. On-surface synthesis of rylene-Type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022-4025 (2015).
    • (2015) J. Am. Chem. Soc , vol.137 , pp. 4022-4025
    • Zhang, H.1
  • 23
    • 84903160822 scopus 로고    scopus 로고
    • Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor, deposition
    • Sakaguchi, H. et al. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 26, 4134-4138 (2014).
    • (2014) Adv. Mater , vol.26 , pp. 4134-4138
    • Sakaguchi, H.1
  • 24
    • 84861616472 scopus 로고    scopus 로고
    • Electronic structure of spatially aligned graphene nanoribbons on Au(788)
    • Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).
    • (2012) Phys. Rev. Lett , vol.108 , pp. 216801
    • Linden, S.1
  • 25
    • 84921758408 scopus 로고    scopus 로고
    • Electronic band dispersion of graphene nanoribbons via Fourier-Transformed scanning tunneling spectroscopy
    • Söde, H. et al. Electronic band dispersion of graphene nanoribbons via Fourier-Transformed scanning tunneling spectroscopy. Phys. Rev. B 91, 045429 (2015).
    • (2015) Phys. Rev , vol.B 91 , pp. 045429
    • Söde, H.1
  • 26
    • 84873644714 scopus 로고    scopus 로고
    • Termini of bottom-up fabricated graphene nanoribbons
    • Talirz, L. et al. Termini of bottom-up fabricated graphene nanoribbons. J. Am. Chem. Soc. 135, 2060-2063 (2013).
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 2060-2063
    • Talirz, L.1
  • 27
    • 84861582606 scopus 로고    scopus 로고
    • Extraordinary epitaxial alignment of graphene islands on Au(111)
    • Joseph, M. W. et al. Extraordinary epitaxial alignment of graphene islands on Au(111). New J. Phys. 14, 053008 (2012).
    • (2012) New J. Phys , vol.14 , pp. 053008
    • Joseph, M.W.1
  • 28
    • 84899420918 scopus 로고    scopus 로고
    • In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold
    • Leicht, P. et al. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold. ACS Nano 8, 3735-3742 (2014).
    • (2014) ACS Nano , vol.8 , pp. 3735-3742
    • Leicht, P.1
  • 29
    • 79961012633 scopus 로고    scopus 로고
    • Single-molecule chemistry and physics explored by low-Temperature scanning probe microscopy
    • Swart, I., Gross, L. & Liljeroth, P. Single-molecule chemistry and physics explored by low-Temperature scanning probe microscopy. Chem. Commun. 47, 9011-9023 (2011).
    • (2011) Chem. Commun , vol.47 , pp. 9011-9023
    • Swart, I.1    Gross, L.2    Liljeroth, P.3
  • 30
    • 84884508546 scopus 로고    scopus 로고
    • Electronic states in finite graphene nanoribbons: Effect of charging and defects
    • Ijäs, M. et al. Electronic states in finite graphene nanoribbons: Effect of charging and defects. Phys. Rev. B 88, 075429 (2013).
    • (2013) Phys. Rev , vol.B 88 , pp. 075429
    • Ijäs, M.1
  • 31
    • 84883258830 scopus 로고    scopus 로고
    • Magnetic correlations in short and narrow graphene armchair nanoribbons
    • Golor, M., Koop, C., Lang, T. C., Wessel, S. & Schmidt, M. J. Magnetic correlations in short and narrow graphene armchair nanoribbons. Phys. Rev. Lett. 111, 085504 (2013).
    • (2013) Phys. Rev. Lett , vol.111 , pp. 085504
    • Golor, M.1    Koop, C.2    Lang, T.C.3    Wessel, S.4    Schmidt, M.J.5
  • 32
    • 84883186252 scopus 로고    scopus 로고
    • Entanglement and polyradical character of polycyclic aromatic hydrocarbons predicted by projected Hartree-Fock theory
    • Rivero, P., Jiménez-Hoyos, C. A. & Scuseria, G. E. Entanglement and polyradical character of polycyclic aromatic hydrocarbons predicted by projected Hartree-Fock theory. J. Phys. Chem. B 117, 12750-12758 (2013).
    • (2013) J. Phys. Chem , vol.B 117 , pp. 12750-12758
    • Rivero, P.1    Jiménez-Hoyos, C.A.2    Scuseria, G.E.3
  • 33
    • 84872139013 scopus 로고    scopus 로고
    • More p electrons make a difference: Emergence of many radicals on graphene nanoribbons studied by ab initio DMRG theory
    • Mizukami, W., Kurashige, Y. & Yanai, T. More p electrons make a difference: Emergence of many radicals on graphene nanoribbons studied by ab initio DMRG theory. J. Chem. Theory Comput. 9, 401-407 (2013).
    • (2013) J. Chem. Theory Comput , vol.9 , pp. 401-407
    • Mizukami, W.1    Kurashige, Y.2    Yanai, T.3
  • 34
    • 84929337189 scopus 로고    scopus 로고
    • Electronic properties of zigzag graphene nanoribbons studied by TAO-DFT
    • Wu, C.-S. & Chai, J.-D. Electronic properties of zigzag graphene nanoribbons studied by TAO-DFT. J. Chem. Theory Comput. 11, 2003-2011 (2015).
    • (2015) J. Chem Theory Comput , vol.11 , pp. 2003-2011
    • Wu, C.-S.1    Chai, J.-D.2
  • 35
    • 0026975994 scopus 로고
    • The geometry of hypothetical curved graphite structures
    • Terrones, H. & Mackay, A. L. The geometry of hypothetical curved graphite structures. Carbon 30, 1251-1260 (1992).
    • (1992) Carbon , vol.30 , pp. 1251-1260
    • Terrones, H.1    Mackay, A.L.2
  • 36
    • 78751642669 scopus 로고    scopus 로고
    • Grains and grain boundaries in single-layer graphene atomic patchwork quilts
    • Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389-392 (2011).
    • (2011) Nature , vol.469 , pp. 389-392
    • Huang, P.Y.1
  • 37
    • 34247647567 scopus 로고    scopus 로고
    • Conductance modeling for graphene nanoribbon (GNR) interconnects
    • Naeemi, A. & Meindl, J. D. Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett. 28, 428-431 (2007).
    • (2007) IEEE Electron Device Lett , vol.28 , pp. 428-431
    • Naeemi, A.1    Meindl, J.D.2
  • 40
    • 84879881727 scopus 로고    scopus 로고
    • Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects
    • Rakheja, S., Kumar, V. & Naeemi, A. Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc. IEEE 101, 1740-1765 (2013).
    • (2013) Proc. IEEE , vol.101 , pp. 1740-1765
    • Rakheja, S.1    Kumar, V.2    Naeemi, A.3
  • 41
    • 77955231284 scopus 로고    scopus 로고
    • Graphene transistors
    • Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487-496 (2010).
    • (2010) Nat. Nanotechnol , vol.5 , pp. 487-496
    • Schwierz, F.1
  • 42
    • 70149102016 scopus 로고    scopus 로고
    • Ab initio molecular simulations with numeric atom-centered orbitals
    • Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Commun. 180, 2175-2196 (2009).
    • (2009) Comp. Phys. Commun , vol.180 , pp. 2175-2196
    • Blum, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.