-
2
-
-
78650804208
-
A firm foundation for private data analysis
-
C. Dwork. A firm foundation for private data analysis. Communications of the ACM, 54 (1): 86-95, 2011.
-
(2011)
Communications of the ACM
, vol.54
, Issue.1
, pp. 86-95
-
-
Dwork, C.1
-
3
-
-
33746037200
-
Our data, ourselves: Privacy via distributed noise generation
-
C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EuroCRYPT, pages 486-503, 2006.
-
(2006)
EuroCRYPT
, pp. 486-503
-
-
Dwork, C.1
Kenthapadi, K.2
McSherry, F.3
Mironov, I.4
Naor, M.5
-
4
-
-
33745556605
-
Calibrating noise to sensitivity in private data analysis
-
C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284, 2006.
-
(2006)
TCC
, pp. 265-284
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Smith, A.4
-
5
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32: 407-499, 2002.
-
(2002)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
6
-
-
84910685712
-
Rappor: Randomized aggregatable privacy-preserving ordinal response
-
Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-preserving ordinal response. In CCS, 2014.
-
(2014)
CCS
-
-
Erlingsson, Ú.1
Pihur, V.2
Korolova, A.3
-
7
-
-
78650518102
-
Boosting the accuracy of differentially private histograms through consistency
-
M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. PVLDB, 3 (1): 1021-1032, 2010.
-
(2010)
PVLDB
, vol.3
, Issue.1
, pp. 1021-1032
-
-
Hay, M.1
Rastogi, V.2
Miklau, G.3
Suciu, D.4
-
8
-
-
84954123107
-
Maximum likelihood postprocessing for differential privacy under consistency constraints
-
J. Lee, Y. Wang, and D. Kifer. Maximum likelihood postprocessing for differential privacy under consistency constraints. In SIGKDD, pages 635-644, 2015.
-
(2015)
SIGKDD
, pp. 635-644
-
-
Lee, J.1
Wang, Y.2
Kifer, D.3
-
9
-
-
84910594199
-
Proximal Newton-type methods for minimizing composite functions
-
J. D. Lee, Y. Sun, and M. A. Saunders. Proximal newton-type methods for minimizing composite functions. SIAM Journal on Optimization, 24 (3): 1420-1443, 2014.
-
(2014)
SIAM Journal on Optimization
, vol.24
, Issue.3
, pp. 1420-1443
-
-
Lee, J.D.1
Sun, Y.2
Saunders, M.A.3
-
11
-
-
84891766947
-
A data-and workload-aware algorithm for range queries under differential privacy
-
C. Li, M. Hay, G. Miklau, and Y. Wang. A data-and workload-aware algorithm for range queries under differential privacy. PVLDB, 7 (5): 341-352, 2014.
-
(2014)
PVLDB
, vol.7
, Issue.5
, pp. 341-352
-
-
Li, C.1
Hay, M.2
Miklau, G.3
Wang, Y.4
-
12
-
-
77954715960
-
Optimizing linear counting queries under differential privacy
-
C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In PODS, pages 123-134, 2010.
-
(2010)
PODS
, pp. 123-134
-
-
Li, C.1
Hay, M.2
Rastogi, V.3
Miklau, G.4
McGregor, A.5
-
13
-
-
84863733988
-
An adaptive mechanism for accurate query answering under differential privacy
-
C. Li and G. Miklau. An adaptive mechanism for accurate query answering under differential privacy. PVLDB, 5 (6): 514-525, 2012.
-
(2012)
PVLDB
, vol.5
, Issue.6
, pp. 514-525
-
-
Li, C.1
Miklau, G.2
-
14
-
-
84875580068
-
Optimal error of query sets under the differentially-private matrix mechanism
-
C. Li and G. Miklau. Optimal error of query sets under the differentially-private matrix mechanism. In ICDT, pages 272-283, 2013.
-
(2013)
ICDT
, pp. 272-283
-
-
Li, C.1
Miklau, G.2
-
15
-
-
70350678967
-
Differentially private recommender systems: Building privacy into the netflix prize contenders
-
F. McSherry and I. Mironov. Differentially private recommender systems: Building privacy into the netflix prize contenders. In SIGKDD, pages 627-636, 2009.
-
(2009)
SIGKDD
, pp. 627-636
-
-
McSherry, F.1
Mironov, I.2
-
17
-
-
84879826933
-
The geometry of differential privacy: The sparse and approximate cases
-
A. Nikolov, K. Talwar, and L. Zhang. The geometry of differential privacy: the sparse and approximate cases. In STOC, pages 351-360, 2013.
-
(2013)
STOC
, pp. 351-360
-
-
Nikolov, A.1
Talwar, K.2
Zhang, L.3
-
18
-
-
84891103742
-
Understanding hierarchical methods for differentially private histograms
-
W. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for differentially private histograms. PVLDB, 6 (14): 1954-1965, 2013.
-
(2013)
PVLDB
, vol.6
, Issue.14
, pp. 1954-1965
-
-
Qardaji, W.1
Yang, W.2
Li, N.3
-
20
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117 (1-2): 387-423, 2009.
-
(2009)
Mathematical Programming
, vol.117
, Issue.1-2
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
-
21
-
-
77952787160
-
Differential privacy via wavelet transforms
-
X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. In ICDE, pages 225-236, 2010.
-
(2010)
ICDE
, pp. 225-236
-
-
Xiao, X.1
Wang, G.2
Gehrke, J.3
-
23
-
-
84872862526
-
Low-rank mechanism: Optimizing batch queries under differential privacy
-
G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Low-rank mechanism: Optimizing batch queries under differential privacy. PVLDB, 5 (11): 1352-1363, 2012.
-
(2012)
PVLDB
, vol.5
, Issue.11
, pp. 1352-1363
-
-
Yuan, G.1
Zhang, Z.2
Winslett, M.3
Xiao, X.4
Yang, Y.5
Hao, Z.6
-
24
-
-
84934766644
-
Optimizing batch linear queries under exact and approximate differential privacy
-
G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Optimizing batch linear queries under exact and approximate differential privacy. ACM Transactions on Database Systems, 40 (2): 11, 2015.
-
(2015)
ACM Transactions on Database Systems
, vol.40
, Issue.2
, pp. 11
-
-
Yuan, G.1
Zhang, Z.2
Winslett, M.3
Xiao, X.4
Yang, Y.5
Hao, Z.6
-
25
-
-
81155131299
-
A block coordinate gradient descent method for regularized convex separable optimization and covariance selection
-
S. Yun, P. Tseng, and K. Toh. A block coordinate gradient descent method for regularized convex separable optimization and covariance selection. Mathematical Programming, 129 (2): 331-355, 2011.
-
(2011)
Mathematical Programming
, vol.129
, Issue.2
, pp. 331-355
-
-
Yun, S.1
Tseng, P.2
Toh, K.3
|