메뉴 건너뛰기




Volumn 13-17-August-2016, Issue , 2016, Pages 2005-2014

Convex optimization for linear query processing under approximate differential privacy

Author keywords

[No Author keywords available]

Indexed keywords

AGGREGATES; ALGORITHMS; CONSTRAINED OPTIMIZATION; CONVEX OPTIMIZATION; DATA MINING; NEWTON-RAPHSON METHOD; OPTIMAL SYSTEMS;

EID: 84984996873     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2939672.2939818     Document Type: Conference Paper
Times cited : (31)

References (25)
  • 2
    • 78650804208 scopus 로고    scopus 로고
    • A firm foundation for private data analysis
    • C. Dwork. A firm foundation for private data analysis. Communications of the ACM, 54 (1): 86-95, 2011.
    • (2011) Communications of the ACM , vol.54 , Issue.1 , pp. 86-95
    • Dwork, C.1
  • 3
    • 33746037200 scopus 로고    scopus 로고
    • Our data, ourselves: Privacy via distributed noise generation
    • C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EuroCRYPT, pages 486-503, 2006.
    • (2006) EuroCRYPT , pp. 486-503
    • Dwork, C.1    Kenthapadi, K.2    McSherry, F.3    Mironov, I.4    Naor, M.5
  • 4
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284, 2006.
    • (2006) TCC , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 6
    • 84910685712 scopus 로고    scopus 로고
    • Rappor: Randomized aggregatable privacy-preserving ordinal response
    • Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-preserving ordinal response. In CCS, 2014.
    • (2014) CCS
    • Erlingsson, Ú.1    Pihur, V.2    Korolova, A.3
  • 7
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially private histograms through consistency
    • M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. PVLDB, 3 (1): 1021-1032, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 1021-1032
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 8
    • 84954123107 scopus 로고    scopus 로고
    • Maximum likelihood postprocessing for differential privacy under consistency constraints
    • J. Lee, Y. Wang, and D. Kifer. Maximum likelihood postprocessing for differential privacy under consistency constraints. In SIGKDD, pages 635-644, 2015.
    • (2015) SIGKDD , pp. 635-644
    • Lee, J.1    Wang, Y.2    Kifer, D.3
  • 9
    • 84910594199 scopus 로고    scopus 로고
    • Proximal Newton-type methods for minimizing composite functions
    • J. D. Lee, Y. Sun, and M. A. Saunders. Proximal newton-type methods for minimizing composite functions. SIAM Journal on Optimization, 24 (3): 1420-1443, 2014.
    • (2014) SIAM Journal on Optimization , vol.24 , Issue.3 , pp. 1420-1443
    • Lee, J.D.1    Sun, Y.2    Saunders, M.A.3
  • 11
    • 84891766947 scopus 로고    scopus 로고
    • A data-and workload-aware algorithm for range queries under differential privacy
    • C. Li, M. Hay, G. Miklau, and Y. Wang. A data-and workload-aware algorithm for range queries under differential privacy. PVLDB, 7 (5): 341-352, 2014.
    • (2014) PVLDB , vol.7 , Issue.5 , pp. 341-352
    • Li, C.1    Hay, M.2    Miklau, G.3    Wang, Y.4
  • 12
    • 77954715960 scopus 로고    scopus 로고
    • Optimizing linear counting queries under differential privacy
    • C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In PODS, pages 123-134, 2010.
    • (2010) PODS , pp. 123-134
    • Li, C.1    Hay, M.2    Rastogi, V.3    Miklau, G.4    McGregor, A.5
  • 13
    • 84863733988 scopus 로고    scopus 로고
    • An adaptive mechanism for accurate query answering under differential privacy
    • C. Li and G. Miklau. An adaptive mechanism for accurate query answering under differential privacy. PVLDB, 5 (6): 514-525, 2012.
    • (2012) PVLDB , vol.5 , Issue.6 , pp. 514-525
    • Li, C.1    Miklau, G.2
  • 14
    • 84875580068 scopus 로고    scopus 로고
    • Optimal error of query sets under the differentially-private matrix mechanism
    • C. Li and G. Miklau. Optimal error of query sets under the differentially-private matrix mechanism. In ICDT, pages 272-283, 2013.
    • (2013) ICDT , pp. 272-283
    • Li, C.1    Miklau, G.2
  • 15
    • 70350678967 scopus 로고    scopus 로고
    • Differentially private recommender systems: Building privacy into the netflix prize contenders
    • F. McSherry and I. Mironov. Differentially private recommender systems: Building privacy into the netflix prize contenders. In SIGKDD, pages 627-636, 2009.
    • (2009) SIGKDD , pp. 627-636
    • McSherry, F.1    Mironov, I.2
  • 17
    • 84879826933 scopus 로고    scopus 로고
    • The geometry of differential privacy: The sparse and approximate cases
    • A. Nikolov, K. Talwar, and L. Zhang. The geometry of differential privacy: the sparse and approximate cases. In STOC, pages 351-360, 2013.
    • (2013) STOC , pp. 351-360
    • Nikolov, A.1    Talwar, K.2    Zhang, L.3
  • 18
    • 84891103742 scopus 로고    scopus 로고
    • Understanding hierarchical methods for differentially private histograms
    • W. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for differentially private histograms. PVLDB, 6 (14): 1954-1965, 2013.
    • (2013) PVLDB , vol.6 , Issue.14 , pp. 1954-1965
    • Qardaji, W.1    Yang, W.2    Li, N.3
  • 20
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117 (1-2): 387-423, 2009.
    • (2009) Mathematical Programming , vol.117 , Issue.1-2 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 21
    • 77952787160 scopus 로고    scopus 로고
    • Differential privacy via wavelet transforms
    • X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. In ICDE, pages 225-236, 2010.
    • (2010) ICDE , pp. 225-236
    • Xiao, X.1    Wang, G.2    Gehrke, J.3
  • 23
    • 84872862526 scopus 로고    scopus 로고
    • Low-rank mechanism: Optimizing batch queries under differential privacy
    • G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Low-rank mechanism: Optimizing batch queries under differential privacy. PVLDB, 5 (11): 1352-1363, 2012.
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1352-1363
    • Yuan, G.1    Zhang, Z.2    Winslett, M.3    Xiao, X.4    Yang, Y.5    Hao, Z.6
  • 25
    • 81155131299 scopus 로고    scopus 로고
    • A block coordinate gradient descent method for regularized convex separable optimization and covariance selection
    • S. Yun, P. Tseng, and K. Toh. A block coordinate gradient descent method for regularized convex separable optimization and covariance selection. Mathematical Programming, 129 (2): 331-355, 2011.
    • (2011) Mathematical Programming , vol.129 , Issue.2 , pp. 331-355
    • Yun, S.1    Tseng, P.2    Toh, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.