메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 635-644

Maximum likelihood postprocessing for differential privacy under consistency constraints

Author keywords

ADMM; Differential privacy; Post processing; PPDM

Indexed keywords

APPLICATION PROGRAMS; DATA HANDLING; DATA MINING; LINEAR PROGRAMMING; MAXIMUM LIKELIHOOD; MAXIMUM LIKELIHOOD ESTIMATION;

EID: 84954123107     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783366     Document Type: Conference Paper
Times cited : (56)

References (23)
  • 1
    • 84874070246 scopus 로고    scopus 로고
    • Differentially private histogram publishing through lossy compression
    • G. Acs, C. Castelluccia, and R. Chen. Differentially private histogram publishing through lossy compression. In ICDM, 2012.
    • (2012) ICDM
    • Acs, G.1    Castelluccia, C.2    Chen, R.3
  • 2
    • 35448955720 scopus 로고    scopus 로고
    • Privacy, accuracy, and consistency too: A holistic solution to contingency table release
    • B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consistency too: A holistic solution to contingency table release. In PODS, 2007.
    • (2007) PODS
    • Barak, B.1    Chaudhuri, K.2    Dwork, C.3    Kale, S.4    McSherry, F.5    Talwar, K.6
  • 3
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1-122, 2011.
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 6
    • 79959954388 scopus 로고    scopus 로고
    • Differentially private data cubes: Optimizing noise sources and consistency
    • B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data cubes: optimizing noise sources and consistency. In SIGMOD, 2011.
    • (2011) SIGMOD
    • Ding, B.1    Winslett, M.2    Han, J.3    Li, Z.4
  • 7
    • 50249086141 scopus 로고    scopus 로고
    • Differential privacy
    • C. Dwork. Differential privacy. In ICALP, 2006.
    • (2006) ICALP
    • Dwork, C.1
  • 8
    • 33746086554 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006.
    • (2006) TCC
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 9
    • 84864124854 scopus 로고    scopus 로고
    • Differential privacy and the risk-utility tradeoff for multi-dimensional contingency tables
    • S. E. Fienberg, A. Rinaldo, and X. Yang. Differential privacy and the risk-utility tradeoff for multi-dimensional contingency tables. In Privacy in Statistical Databases, 2010.
    • (2010) Privacy in Statistical Databases
    • Fienberg, S.E.1    Rinaldo, A.2    Yang, X.3
  • 10
    • 84877755332 scopus 로고    scopus 로고
    • A simple and practical algorithm for differentially private data release
    • M. Hardt, K. Ligett, and F. Mcsherry. A simple and practical algorithm for differentially private data release. In NIPS, 2012.
    • (2012) NIPS
    • Hardt, M.1    Ligett, K.2    Mcsherry, F.3
  • 11
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially private histograms through consistency
    • M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. PVLDB, 3(1-2):1021-1032, 2010.
    • (2010) PVLDB , vol.3 , Issue.1-2 , pp. 1021-1032
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 12
    • 84907022968 scopus 로고    scopus 로고
    • Top-k frequent itemsets via differentially private fp-trees
    • J. Lee and C. W. Clifton. Top-k frequent itemsets via differentially private fp-trees. In KDD, 2014.
    • (2014) KDD
    • Lee, J.1    Clifton, C.W.2
  • 13
    • 77954715960 scopus 로고    scopus 로고
    • Optimizing linear counting queries under differential privacy
    • C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In PODS, 2010.
    • (2010) PODS
    • Li, C.1    Hay, M.2    Rastogi, V.3    Miklau, G.4    McGregor, A.5
  • 14
    • 84880543792 scopus 로고    scopus 로고
    • Information preservation in statistical privacy and Bayesian estimation of unattributed histograms
    • B.-R. Lin and D. Kifer. Information preservation in statistical privacy and bayesian estimation of unattributed histograms. In SIGMOD, 2013.
    • (2013) SIGMOD
    • Lin, B.-R.1    Kifer, D.2
  • 15
    • 84901767186 scopus 로고    scopus 로고
    • Calibrating data to sensitivity in private data analysis: A platform for differentially-private analysis of weighted datasets
    • D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data to sensitivity in private data analysis: A platform for differentially-private analysis of weighted datasets. PVLDB, 7(8):637-648, 2014.
    • (2014) PVLDB , vol.7 , Issue.8 , pp. 637-648
    • Proserpio, D.1    Goldberg, S.2    McSherry, F.3
  • 16
    • 84881363049 scopus 로고    scopus 로고
    • Differentially private grids for geospatial data
    • W. Qardaji, W. Yang, and N. Li. Differentially private grids for geospatial data. In ICDE, 2013.
    • (2013) ICDE
    • Qardaji, W.1    Yang, W.2    Li, N.3
  • 17
    • 84891103742 scopus 로고    scopus 로고
    • Understanding hierarchical methods for differentially private histograms
    • W. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for differentially private histograms. PVLDB, 6(14):1954-1965, 2013.
    • (2013) PVLDB , vol.6 , Issue.14 , pp. 1954-1965
    • Qardaji, W.1    Yang, W.2    Li, N.3
  • 18
    • 84904328765 scopus 로고    scopus 로고
    • Priview: Practical differentially private release of marginal contingency tables
    • W. Qardaji, W. Yang, and N. Li. Priview: Practical differentially private release of marginal contingency tables. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Qardaji, W.1    Yang, W.2    Li, N.3
  • 19
    • 79959714549 scopus 로고    scopus 로고
    • Privacy-preserving statistical estimation with optimal convergence rates
    • A. Smith. Privacy-preserving statistical estimation with optimal convergence rates. In STOC, 2011.
    • (2011) STOC
    • Smith, A.1
  • 20
    • 85161972679 scopus 로고    scopus 로고
    • Probabilistic inference and differential privacy
    • O. Williams and F. McSherry. Probabilistic inference and differential privacy. In NIPS, 2010.
    • (2010) NIPS
    • Williams, O.1    McSherry, F.2
  • 21
    • 79959540412 scopus 로고    scopus 로고
    • Differential privacy via wavelet transforms
    • X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. TKDE, 23(8):1200-1214, 2011.
    • (2011) TKDE , vol.23 , Issue.8 , pp. 1200-1214
    • Xiao, X.1    Wang, G.2    Gehrke, J.3
  • 22
    • 84872862526 scopus 로고    scopus 로고
    • Low-rank mechanism: Optimizing batch queries under differential privacy
    • G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Low-rank mechanism: Optimizing batch queries under differential privacy. PVLDB, 5(11):1352-1363, 2012.
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1352-1363
    • Yuan, G.1    Zhang, Z.2    Winslett, M.3    Xiao, X.4    Yang, Y.5    Hao, Z.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.