-
1
-
-
34248997759
-
Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
-
Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204: 1057-1069.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1057-1069
-
-
Arnold, L.1
Henry, A.2
Poron, F.3
Baba-Amer, Y.4
Van Rooijen, N.5
Plonquet, A.6
Gherardi, R.K.7
Chazaud, B.8
-
2
-
-
84862629389
-
Transplanted mesoangioblasts require macrophage IL-10 for survival in a mouse model of muscle injury
-
Bosurgi, L., G. Corna, M. Vezzoli, T. Touvier, G. Cossu, A. A. Manfredi, S. Brunelli, and P. Rovere-Querini. 2012. Transplanted mesoangioblasts require macrophage IL-10 for survival in a mouse model of muscle injury. J. Immunol. 188: 6267-6277.
-
(2012)
J. Immunol.
, vol.188
, pp. 6267-6277
-
-
Bosurgi, L.1
Corna, G.2
Vezzoli, M.3
Touvier, T.4
Cossu, G.5
Manfredi, A.A.6
Brunelli, S.7
Rovere-Querini, P.8
-
3
-
-
14644430904
-
Chemokine receptor CCR2 involvement in skeletal muscle regeneration
-
Warren, G. L., T. Hulderman, D. Mishra, X. Gao, L. Millecchia, L. O'Farrell, W. A. Kuziel, and P. P. Simeonova. 2005. Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J. 19: 413-415.
-
(2005)
FASEB J.
, vol.19
, pp. 413-415
-
-
Warren, G.L.1
Hulderman, T.2
Mishra, D.3
Gao, X.4
Millecchia, L.5
O'Farrell, L.6
Kuziel, W.A.7
Simeonova, P.P.8
-
4
-
-
70350445698
-
A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair
-
Ruffell, D., F. Mourkioti, A. Gambardella, P. Kirstetter, R. G. Lopez, N. Rosenthal, and C. Nerlov. 2009. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. USA 106: 17475-17480.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 17475-17480
-
-
Ruffell, D.1
Mourkioti, F.2
Gambardella, A.3
Kirstetter, P.4
Lopez, R.G.5
Rosenthal, N.6
Nerlov, C.7
-
5
-
-
84957895128
-
Cell death, clearance and immunity in the skeletal muscle
-
Sciorati, C., E. Rigamonti, A. A. Manfredi, and P. Rovere-Querini. 2016. Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ. 23: 927-937.
-
(2016)
Cell Death Differ.
, vol.23
, pp. 927-937
-
-
Sciorati, C.1
Rigamonti, E.2
Manfredi, A.A.3
Rovere-Querini, P.4
-
6
-
-
84866551217
-
IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration
-
Deng, B., M. Wehling-Henricks, S. A. Villalta, Y. Wang, and J. G. Tidball. 2012. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 189: 3669-3680.
-
(2012)
J. Immunol.
, vol.189
, pp. 3669-3680
-
-
Deng, B.1
Wehling-Henricks, M.2
Villalta, S.A.3
Wang, Y.4
Tidball, J.G.5
-
7
-
-
78149250305
-
Polarization dictates iron handling by inflammatory and alternatively activated macrophages
-
Corna, G., L. Campana, E. Pignatti, A. Castiglioni, E. Tagliafico, L. Bosurgi, A. Campanella, S. Brunelli, A. A. Manfredi, P. Apostoli, et al. 2010. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95: 1814-1822.
-
(2010)
Haematologica
, vol.95
, pp. 1814-1822
-
-
Corna, G.1
Campana, L.2
Pignatti, E.3
Castiglioni, A.4
Tagliafico, E.5
Bosurgi, L.6
Campanella, A.7
Brunelli, S.8
Manfredi, A.A.9
Apostoli, P.10
-
8
-
-
78149234350
-
Control of iron homeostasis as a key component of macrophage polarization
-
Gaetano, C., L. Massimo, and M. Alberto. 2010. Control of iron homeostasis as a key component of macrophage polarization. Haematologica 95: 1801-1803.
-
(2010)
Haematologica
, vol.95
, pp. 1801-1803
-
-
Gaetano, C.1
Massimo, L.2
Alberto, M.3
-
9
-
-
84888131588
-
Liver X receptor activation stimulates iron export in human alternative macrophages
-
Bories, G., S. Colin, J. Vanhoutte, B. Derudas, C. Copin, M. Fanchon, M. Daoudi, L. Belloy, S. Haulon, C. Zawadzki, et al. 2013. Liver X receptor activation stimulates iron export in human alternative macrophages. Circ. Res. 113: 1196-1205.
-
(2013)
Circ. Res.
, vol.113
, pp. 1196-1205
-
-
Bories, G.1
Colin, S.2
Vanhoutte, J.3
Derudas, B.4
Copin, C.5
Fanchon, M.6
Daoudi, M.7
Belloy, L.8
Haulon, S.9
Zawadzki, C.10
-
10
-
-
84864272758
-
Mechanisms of mammalian iron homeostasis
-
Pantopoulos, K., S. K. Porwal, A. Tartakoff, and L. Devireddy. 2012. Mechanisms of mammalian iron homeostasis. Biochemistry 51: 5705-5724.
-
(2012)
Biochemistry
, vol.51
, pp. 5705-5724
-
-
Pantopoulos, K.1
Porwal, S.K.2
Tartakoff, A.3
Devireddy, L.4
-
11
-
-
0035947178
-
Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver
-
Kawane, K., H. Fukuyama, G. Kondoh, J. Takeda, Y. Ohsawa, Y. Uchiyama, and S. Nagata. 2001. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292: 1546-1549.
-
(2001)
Science
, vol.292
, pp. 1546-1549
-
-
Kawane, K.1
Fukuyama, H.2
Kondoh, G.3
Takeda, J.4
Ohsawa, Y.5
Uchiyama, Y.6
Nagata, S.7
-
12
-
-
13444252281
-
Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin
-
Knutson, M. D., M. Oukka, L. M. Koss, F. Aydemir, and M. Wessling-Resnick. 2005. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc. Natl. Acad. Sci. USA 102: 1324-1328.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 1324-1328
-
-
Knutson, M.D.1
Oukka, M.2
Koss, L.M.3
Aydemir, F.4
Wessling-Resnick, M.5
-
13
-
-
84866007988
-
Macrophages and systemic iron homeostasis
-
Ganz, T. 2012. Macrophages and systemic iron homeostasis. J. Innate Immun. 4: 446-453.
-
(2012)
J. Innate Immun.
, vol.4
, pp. 446-453
-
-
Ganz, T.1
-
14
-
-
70349306677
-
Recycling iron in normal and pathological states
-
Beaumont, C., and C. Delaby. 2009. Recycling iron in normal and pathological states. Semin. Hematol. 46: 328-338.
-
(2009)
Semin. Hematol.
, vol.46
, pp. 328-338
-
-
Beaumont, C.1
Delaby, C.2
-
16
-
-
0032006450
-
Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages
-
Bratosin, D., J. Mazurier, J. P. Tissier, J. Estaquier, J. J. Huart, J. C. Ameisen, D. Aminoff, and J. Montreuil. 1998. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 80: 173-195.
-
(1998)
A Review. Biochimie
, vol.80
, pp. 173-195
-
-
Bratosin, D.1
Mazurier, J.2
Tissier, J.P.3
Estaquier, J.4
Huart, J.J.5
Ameisen, J.C.6
Aminoff, D.7
Montreuil, J.8
-
17
-
-
84864080466
-
Hemolytic anemia in adults: Main causes and diagnostic procedures
-
Guillaud, C., V. Loustau, and M. Michel. 2012. Hemolytic anemia in adults: main causes and diagnostic procedures. Expert Rev. Hematol. 5: 229-241.
-
(2012)
Expert Rev. Hematol.
, vol.5
, pp. 229-241
-
-
Guillaud, C.1
Loustau, V.2
Michel, M.3
-
18
-
-
41649110613
-
Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: Early mRNA induction by haem, followed by iron-dependent protein expression
-
Delaby, C., N. Pilard, H. Puy, and F. Canonne-Hergaux. 2008. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem. J. 411: 123-131.
-
(2008)
Biochem. J.
, vol.411
, pp. 123-131
-
-
Delaby, C.1
Pilard, N.2
Puy, H.3
Canonne-Hergaux, F.4
-
19
-
-
77953713414
-
Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position-7007 of the FPN1 promoter
-
Marro, S., D. Chiabrando, E. Messana, J. Stolte, E. Turco, E. Tolosano, and M. U. Muckenthaler. 2010. Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position-7007 of the FPN1 promoter. Haematologica 95: 1261-1268.
-
(2010)
Haematologica
, vol.95
, pp. 1261-1268
-
-
Marro, S.1
Chiabrando, D.2
Messana, E.3
Stolte, J.4
Turco, E.5
Tolosano, E.6
Muckenthaler, M.U.7
-
21
-
-
77954249308
-
Two to tango: Regulation of mammalian iron metabolism
-
Hentze, M. W., M. U. Muckenthaler, B. Galy, and C. Camaschella. 2010. Two to tango: regulation of mammalian iron metabolism. Cell 142: 24-38.
-
(2010)
Cell
, vol.142
, pp. 24-38
-
-
Hentze, M.W.1
Muckenthaler, M.U.2
Galy, B.3
Camaschella, C.4
-
22
-
-
0035153971
-
Iron biology in immune function, muscle metabolism and neuronal functioning
-
discussion 580S
-
Beard, J. L. 2001. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 131: 568S-579S; discussion 580S.
-
(2001)
J. Nutr.
, vol.131
, pp. 568S-579S
-
-
Beard, J.L.1
-
23
-
-
80052563357
-
Highmobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle
-
Vezzoli, M., P. Castellani, G. Corna, A. Castiglioni, L. Bosurgi, A. Monno, S. Brunelli, A. A. Manfredi, A. Rubartelli, and P. Rovere-Querini. 2011. Highmobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle. Antioxid. Redox Signal. 15: 2161-2174.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 2161-2174
-
-
Vezzoli, M.1
Castellani, P.2
Corna, G.3
Castiglioni, A.4
Bosurgi, L.5
Monno, A.6
Brunelli, S.7
Manfredi, A.A.8
Rubartelli, A.9
Rovere-Querini, P.10
-
24
-
-
84896361698
-
Nitric oxide controls fat deposition in dystrophic skeletal muscle by regulating fibroadipogenic precursor differentiation
-
Cordani, N., V. Pisa, L. Pozzi, C. Sciorati, and E. Clementi. 2014. Nitric oxide controls fat deposition in dystrophic skeletal muscle by regulating fibroadipogenic precursor differentiation. Stem Cells 32: 874-885.
-
(2014)
Stem Cells
, vol.32
, pp. 874-885
-
-
Cordani, N.1
Pisa, V.2
Pozzi, L.3
Sciorati, C.4
Clementi, E.5
-
25
-
-
0034130261
-
Functional and immunological analysis of recombinant mouse H-and L-ferritins from Escherichia coli
-
Santambrogio, P., A. Cozzi, S. Levi, E. Rovida, F. Magni, A. Albertini, and P. Arosio. 2000. Functional and immunological analysis of recombinant mouse H-and L-ferritins from Escherichia coli. Protein Expr. Purif. 19: 212-218.
-
(2000)
Protein Expr. Purif.
, vol.19
, pp. 212-218
-
-
Santambrogio, P.1
Cozzi, A.2
Levi, S.3
Rovida, E.4
Magni, F.5
Albertini, A.6
Arosio, P.7
-
26
-
-
77951700255
-
Regulatory interactions between muscle and the immune system during muscle regeneration
-
Tidball, J. G., and S. A. Villalta. 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298: R1173-R1187.
-
(2010)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.298
, pp. R1173-R1187
-
-
Tidball, J.G.1
Villalta, S.A.2
-
27
-
-
58249104981
-
Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis
-
Kohyama, M., W. Ise, B. T. Edelson, P. R. Wilker, K. Hildner, C. Mejia, W. A. Frazier, T. L. Murphy, and K. M. Murphy. 2009. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457: 318-321.
-
(2009)
Nature
, vol.457
, pp. 318-321
-
-
Kohyama, M.1
Ise, W.2
Edelson, B.T.3
Wilker, P.R.4
Hildner, K.5
Mejia, C.6
Frazier, W.A.7
Murphy, T.L.8
Murphy, K.M.9
-
28
-
-
0027170207
-
The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis
-
Robertson, T. A., M. A. Maley, M. D. Grounds, and J. M. Papadimitriou. 1993. The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp. Cell Res. 207: 321-331.
-
(1993)
Exp. Cell Res.
, vol.207
, pp. 321-331
-
-
Robertson, T.A.1
Maley, M.A.2
Grounds, M.D.3
Papadimitriou, J.M.4
-
29
-
-
0029997406
-
Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions
-
McLennan, I. S. 1996. Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J. Anat. 188: 17-28.
-
(1996)
J. Anat.
, vol.188
, pp. 17-28
-
-
McLennan, I.S.1
-
30
-
-
0036809448
-
Interactions between muscle and the immune system during modified musculoskeletal loading
-
Tidball, J. G. 2002. Interactions between muscle and the immune system during modified musculoskeletal loading. Clin. Orthop. Relat. Res. 403(Suppl.): S100-S109.
-
(2002)
Clin. Orthop. Relat. Res.
, vol.403
, pp. S100-S109
-
-
Tidball, J.G.1
-
31
-
-
0028234349
-
Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension
-
St Pierre, B. A., and J. G. Tidball. 1994. Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. J. Appl. Physiol. 77: 290-297.
-
(1994)
J. Appl. Physiol.
, vol.77
, pp. 290-297
-
-
St Pierre, B.A.1
Tidball, J.G.2
-
32
-
-
0346849710
-
Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth
-
Chazaud, B., C. Sonnet, P. Lafuste, G. Bassez, A. C. Rimaniol, F. Poron, F. J. Authier, P. A. Dreyfus, and R. K. Gherardi. 2003. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J. Cell Biol. 163: 1133-1143.
-
(2003)
J. Cell Biol.
, vol.163
, pp. 1133-1143
-
-
Chazaud, B.1
Sonnet, C.2
Lafuste, P.3
Bassez, G.4
Rimaniol, A.C.5
Poron, F.6
Authier, F.J.7
Dreyfus, P.A.8
Gherardi, R.K.9
-
33
-
-
1942422716
-
Role of CC chemokines in skeletal muscle functional restoration after injury
-
Warren, G. L., L. O'Farrell, M. Summan, T. Hulderman, D. Mishra, M. I. Luster, W. A. Kuziel, and P. P. Simeonova. 2004. Role of CC chemokines in skeletal muscle functional restoration after injury. Am. J. Physiol. Cell Physiol. 286: C1031-C1036.
-
(2004)
Am. J. Physiol. Cell Physiol.
, vol.286
, pp. C1031-C1036
-
-
Warren, G.L.1
O'Farrell, L.2
Summan, M.3
Hulderman, T.4
Mishra, D.5
Luster, M.I.6
Kuziel, W.A.7
Simeonova, P.P.8
-
34
-
-
33744821877
-
Macrophages and skeletal muscle regeneration: A clodronate-containing liposome depletion study
-
Summan, M., G. L. Warren, R. R. Mercer, R. Chapman, T. Hulderman, N. Van Rooijen, and P. P. Simeonova. 2006. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290: R1488-R1495.
-
(2006)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.290
, pp. R1488-R1495
-
-
Summan, M.1
Warren, G.L.2
Mercer, R.R.3
Chapman, R.4
Hulderman, T.5
Van Rooijen, N.6
Simeonova, P.P.7
-
35
-
-
33845785972
-
Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo
-
Tidball, J. G., and M. Wehling-Henricks. 2007. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J. Physiol. 578: 327-336.
-
(2007)
J. Physiol.
, vol.578
, pp. 327-336
-
-
Tidball, J.G.1
Wehling-Henricks, M.2
-
36
-
-
53049103985
-
Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis
-
Segawa, M., S. Fukada, Y. Yamamoto, H. Yahagi, M. Kanematsu, M. Sato, T. Ito, A. Uezumi, S. Hayashi, Y. Miyagoe-Suzuki, et al. 2008. Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp. Cell Res. 314: 3232-3244.
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 3232-3244
-
-
Segawa, M.1
Fukada, S.2
Yamamoto, Y.3
Yahagi, H.4
Kanematsu, M.5
Sato, M.6
Ito, T.7
Uezumi, A.8
Hayashi, S.9
Miyagoe-Suzuki, Y.10
-
37
-
-
79251585227
-
Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury
-
Lu, H., D. Huang, N. Saederup, I. F. Charo, R. M. Ransohoff, and L. Zhou. 2011. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 25: 358-369.
-
(2011)
FASEB J.
, vol.25
, pp. 358-369
-
-
Lu, H.1
Huang, D.2
Saederup, N.3
Charo, I.F.4
Ransohoff, R.M.5
Zhou, L.6
-
38
-
-
74849087161
-
Muscle resident macrophages control the immune cell reaction in a mouse model of notexininduced myoinjury
-
Brigitte, M., C. Schilte, A. Plonquet, Y. Baba-Amer, A. Henri, C. Charlier, S. Tajbakhsh, M. Albert, R. K. Gherardi, and F. Chrétien. 2010. Muscle resident macrophages control the immune cell reaction in a mouse model of notexininduced myoinjury. Arthritis Rheum. 62: 268-279.
-
(2010)
Arthritis Rheum.
, vol.62
, pp. 268-279
-
-
Brigitte, M.1
Schilte, C.2
Plonquet, A.3
Baba-Amer, Y.4
Henri, A.5
Charlier, C.6
Tajbakhsh, S.7
Albert, M.8
Gherardi, R.K.9
Chrétien, F.10
-
39
-
-
79952135247
-
An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice
-
Sindrilaru, A., T. Peters, S. Wieschalka, C. Baican, A. Baican, H. Peter, A. Hainzl, S. Schatz, Y. Qi, A. Schlecht, et al. 2011. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121: 985-997.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 985-997
-
-
Sindrilaru, A.1
Peters, T.2
Wieschalka, S.3
Baican, C.4
Baican, A.5
Peter, H.6
Hainzl, A.7
Schatz, S.8
Qi, Y.9
Schlecht, A.10
-
40
-
-
84863531503
-
Inhibition of hepcidin transcription by growth factors
-
Goodnough, J. B., E. Ramos, E. Nemeth, and T. Ganz. 2012. Inhibition of hepcidin transcription by growth factors. Hepatology 56: 291-299.
-
(2012)
Hepatology
, vol.56
, pp. 291-299
-
-
Goodnough, J.B.1
Ramos, E.2
Nemeth, E.3
Ganz, T.4
-
41
-
-
78651330854
-
BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells
-
Ono, Y., F. Calhabeu, J. E. Morgan, T. Katagiri, H. Amthor, and P. S. Zammit. 2011. BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ. 18: 222-234.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 222-234
-
-
Ono, Y.1
Calhabeu, F.2
Morgan, J.E.3
Katagiri, T.4
Amthor, H.5
Zammit, P.S.6
-
42
-
-
84896366680
-
Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages
-
Haldar, M., M. Kohyama, A. Y. So, W. Kc, X. Wu, C. G. Briseño, A. T. Satpathy, N. M. Kretzer, H. Arase, N. S. Rajasekaran, et al. 2014. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156: 1223-1234.
-
(2014)
Cell
, vol.156
, pp. 1223-1234
-
-
Haldar, M.1
Kohyama, M.2
So, A.Y.3
Kc, W.4
Wu, X.5
Briseño, C.G.6
Satpathy, A.T.7
Kretzer, N.M.8
Arase, H.9
Rajasekaran, N.S.10
-
43
-
-
84938096484
-
Fat deposition and accumulation in the damaged and inflamed skeletal muscle: Cellular and molecular players
-
Sciorati, C., E. Clementi, A. A. Manfredi, and P. Rovere-Querini. 2015. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell. Mol. Life Sci. 72: 2135-2156.
-
(2015)
Cell. Mol. Life Sci.
, vol.72
, pp. 2135-2156
-
-
Sciorati, C.1
Clementi, E.2
Manfredi, A.A.3
Rovere-Querini, P.4
-
44
-
-
84873404989
-
Adiponectin receptor as a key player in healthy longevity and obesity-related diseases
-
Yamauchi, T., and T. Kadowaki. 2013. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 17: 185-196.
-
(2013)
Cell Metab.
, vol.17
, pp. 185-196
-
-
Yamauchi, T.1
Kadowaki, T.2
-
45
-
-
78049257829
-
PPARg: A circadian transcription factor in adipogenesis and osteogenesis
-
Kawai, M., and C. J. Rosen. 2010. PPARg: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6: 629-636.
-
(2010)
Nat. Rev. Endocrinol.
, vol.6
, pp. 629-636
-
-
Kawai, M.1
Rosen, C.J.2
-
46
-
-
0031709850
-
Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress
-
Garner, B., K. Roberg, and U. T. Brunk. 1998. Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress. Free Radic. Res. 29: 103-114.
-
(1998)
Free Radic. Res.
, vol.29
, pp. 103-114
-
-
Garner, B.1
Roberg, K.2
Brunk, U.T.3
-
47
-
-
0035397392
-
Ferritin and the response to oxidative stress
-
Orino, K., L. Lehman, Y. Tsuji, H. Ayaki, S. V. Torti, and F. M. Torti. 2001. Ferritin and the response to oxidative stress. Biochem. J. 357: 241-247.
-
(2001)
Biochem. J.
, vol.357
, pp. 241-247
-
-
Orino, K.1
Lehman, L.2
Tsuji, Y.3
Ayaki, H.4
Torti, S.V.5
Torti, F.M.6
-
48
-
-
75949096894
-
Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis
-
Joe, A.W., L. Yi, A. Natarajan, F. Le Grand, L. So, J.Wang, M. A. Rudnicki, and F. M. Rossi. 2010. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12: 153-163.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 153-163
-
-
Joe, A.W.1
Yi, L.2
Natarajan, A.3
Le Grand, F.4
So, L.5
Wang, J.6
Rudnicki, M.A.7
Rossi, F.M.8
-
49
-
-
75949130333
-
Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle
-
Uezumi, A., S. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida. 2010. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12: 143-152.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 143-152
-
-
Uezumi, A.1
Fukada, S.2
Yamamoto, N.3
Takeda, S.4
Tsuchida, K.5
-
50
-
-
84902198202
-
Intramuscular adipogenesis is inhibited by myo-endothelial progenitors with functioning Bmpr1a signalling
-
Huang, P., T. J. Schulz, A. Beauvais, Y. H. Tseng, and E. Gussoni. 2014. Intramuscular adipogenesis is inhibited by myo-endothelial progenitors with functioning Bmpr1a signalling. Nat. Commun. 5: 4063.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4063
-
-
Huang, P.1
Schulz, T.J.2
Beauvais, A.3
Tseng, Y.H.4
Gussoni, E.5
-
51
-
-
84906545323
-
MicroRNA-130a is up-regulated in mouse liver by iron deficiency and targets the bone morphogenetic protein (BMP) receptor ALK2 to attenuate BMP signaling and hepcidin transcription
-
Zumbrennen-Bullough, K. B., Q. Wu, A. B. Core, S. Canali, W. Chen, I. Theurl, D. Meynard, and J. L. Babitt. 2014. MicroRNA-130a is up-regulated in mouse liver by iron deficiency and targets the bone morphogenetic protein (BMP) receptor ALK2 to attenuate BMP signaling and hepcidin transcription. J. Biol. Chem. 289: 23796-23808.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 23796-23808
-
-
Zumbrennen-Bullough, K.B.1
Wu, Q.2
Core, A.B.3
Canali, S.4
Chen, W.5
Theurl, I.6
Meynard, D.7
Babitt, J.L.8
-
52
-
-
84877329207
-
PPARg signaling and metabolism: The good, the bad and the future
-
Ahmadian, M., J. M. Suh, N. Hah, C. Liddle, A. R. Atkins, M. Downes, and R. M. Evans. 2013. PPARg signaling and metabolism: the good, the bad and the future. Nat. Med. 19: 557-566.
-
(2013)
Nat. Med.
, vol.19
, pp. 557-566
-
-
Ahmadian, M.1
Suh, J.M.2
Hah, N.3
Liddle, C.4
Atkins, A.R.5
Downes, M.6
Evans, R.M.7
-
53
-
-
24044476859
-
Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice
-
Duan, S. Z., C. Y. Ivashchenko, M. W. Russell, D. S. Milstone, and R. M. Mortensen. 2005. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ. Res. 97: 372-379.
-
(2005)
Circ. Res.
, vol.97
, pp. 372-379
-
-
Duan, S.Z.1
Ivashchenko, C.Y.2
Russell, M.W.3
Milstone, D.S.4
Mortensen, R.M.5
-
54
-
-
34948910262
-
Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice
-
Son, N. H., T. S. Park, H. Yamashita, M. Yokoyama, L. A. Huggins, K. Okajima, S. Homma, M. J. Szabolcs, L. S. Huang, and I. J. Goldberg. 2007. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J. Clin. Invest. 117: 2791-2801.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 2791-2801
-
-
Son, N.H.1
Park, T.S.2
Yamashita, H.3
Yokoyama, M.4
Huggins, L.A.5
Okajima, K.6
Homma, S.7
Szabolcs, M.J.8
Huang, L.S.9
Goldberg, I.J.10
|