메뉴 건너뛰기




Volumn , Issue , 2012, Pages 91-98

Local implicit feedback mining for music recommendation

Author keywords

Collaborative filtering; Efficient training; Local implicit feedback; Recommender system

Indexed keywords

BASELINE MODELS; COLLABORATIVE FILTERING; DIGITAL MUSIC; GLOBAL BEHAVIORS; IMPLICIT FEEDBACK; MUSIC COLLECTION; MUSIC RECOMMENDATION; RECOMMENDATION PERFORMANCE; TEMPORAL MODELS; TIME GRANULARITIES; TRAINING ALGORITHMS;

EID: 84867382271     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2365952.2365973     Document Type: Conference Paper
Times cited : (46)

References (26)
  • 7
    • 33745798477 scopus 로고    scopus 로고
    • Time weight collaborative filtering
    • CIKM'05 - Proceedings of the 14th ACM International Conference on Information and Knowledge Management
    • Y. Ding and X. Li. Time weight collaborative filtering. In Proceedings of the 14th ACM international conference on Information and knowledge management, pages 485-492. ACM, 2005. (Pubitemid 44022221)
    • (2005) International Conference on Information and Knowledge Management, Proceedings , pp. 485-492
    • Ding, Y.1    Li, X.2
  • 14
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • August
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42, August 2009.
    • (2009) Computer , vol.42
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 19
    • 38048999204 scopus 로고    scopus 로고
    • Location-based recommendation system using bayesian usera̧ŕs preference model in mobile devices
    • M. Park, J. Hong, and S. Cho. Location-based recommendation system using bayesian usera̧ŕs preference model in mobile devices. Ubiquitous Intelligence and Computing, pages 1130-1139, 2007.
    • (2007) Ubiquitous Intelligence and Computing , pp. 1130-1139
    • Park, M.1    Hong, J.2    Cho, S.3
  • 23
    • 72249094333 scopus 로고    scopus 로고
    • Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering
    • New York, NY, USA, ACM
    • Y. Shi, M. Larson, and A. Hanjalic. Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering. In Proceedings of the third ACM conference on Recommender systems, RecSys '09, pages 125-132, New York, NY, USA, 2009. ACM.
    • (2009) Proceedings of the Third ACM Conference on Recommender Systems, RecSys '09 , pp. 125-132
    • Shi, Y.1    Larson, M.2    Hanjalic, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.