-
1
-
-
59849100330
-
Touch, grasp, deliver and control: Functional cross-talk between microtubules and cell adhesions
-
Akhmanova A, Stehbens SJ, Yap AS. 2009. Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions. Traffic 10:268–274. doi:10.1111/j.1600-0854.2008.00869.x
-
(2009)
Traffic
, vol.10
, pp. 268-274
-
-
Akhmanova, A.1
Stehbens, S.J.2
Yap, A.S.3
-
2
-
-
84901706706
-
How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs
-
Alam T, Alazmi M, Gao X, Arold ST. 2014. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs. Biochemical Journal 460:317–329. doi:10.1042/BJ20140298
-
(2014)
Biochemical Journal
, vol.460
, pp. 317-329
-
-
Alam, T.1
Alazmi, M.2
Gao, X.3
Arold, S.T.4
-
3
-
-
70450222316
-
The structure of an integrin/talin complex reveals the basis of inside-out signal transduction
-
Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, Vakonakis I, Bate N, Critchley DR, Ginsberg MH, Campbell ID. 2009. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. The EMBO Journal 28:3623–3632. doi:10.1038/emboj.2009.287
-
(2009)
The EMBO Journal
, vol.28
, pp. 3623-3632
-
-
Anthis, N.J.1
Wegener, K.L.2
Ye, F.3
Kim, C.4
Goult, B.T.5
Lowe, E.D.6
Vakonakis, I.7
Bate, N.8
Critchley, D.R.9
Ginsberg, M.H.10
Campbell, I.D.11
-
4
-
-
84906876101
-
Liprin-a1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration
-
Astro V, Chiaretti S, Magistrati E, Fivaz M, de Curtis I. 2014. Liprin-a1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration. Journal of Cell Science 127:3862–3876. doi:10.1242/jcs.155663
-
(2014)
Journal of Cell Science
, vol.127
, pp. 3862-3876
-
-
Astro, V.1
Chiaretti, S.2
Magistrati, E.3
Fivaz, M.4
De Curtis, I.5
-
5
-
-
84930507915
-
Plasma membrane-associated platforms: Dynamic scaffolds that organize membrane-associated events
-
Astro V, de Curtis I. 2015. Plasma membrane-associated platforms: dynamic scaffolds that organize membrane-associated events. Science Signaling 8:re1. doi:10.1126/scisignal.aaa3312
-
(2015)
Science Signaling
, vol.8
-
-
Astro, V.1
De Curtis, I.2
-
6
-
-
84949310075
-
Vinculin controls talin engagement with the actomyosin machinery
-
Atherton P, Stutchbury B, Wang D-Y, Jethwa D, Tsang R, Meiler-Rodriguez E, Wang P, Bate N, Zent R, Barsukov IL, Goult BT, Critchley DR, Ballestrem C. 2015. Vinculin controls talin engagement with the actomyosin machinery. Nature Communications 6:10038. doi:10.1038/ncomms10038
-
(2015)
Nature Communications
, vol.6
-
-
Atherton, P.1
Stutchbury, B.2
Wang, D.-Y.3
Jethwa, D.4
Tsang, R.5
Meiler-Rodriguez, E.6
Wang, P.7
Bate, N.8
Zent, R.9
Barsukov, I.L.10
Goult, B.T.11
Critchley, D.R.12
Ballestrem, C.13
-
7
-
-
84859991132
-
Subcellular localization of talin is regulated by inter-domain interactions
-
Banno A, Goult BT, Lee H, Bate N, Critchley DR, Ginsberg MH. 2012. Subcellular localization of talin is regulated by inter-domain interactions. Journal of Biological Chemistry 287:13799–13812. doi:10.1074/jbc.M112.341214
-
(2012)
Journal of Biological Chemistry
, vol.287
, pp. 13799-13812
-
-
Banno, A.1
Goult, B.T.2
Lee, H.3
Bate, N.4
Critchley, D.R.5
Ginsberg, M.H.6
-
8
-
-
84923806736
-
CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5(3 and actin for focal delivery of acetylcholine receptor vesicles
-
Basu S, Sladecek S, Martinez de la Peña y Valenzuela I, Akaaboune M, Smal I, Martin K, Galjart N, Brenner HR. 2015. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5(3 and actin for focal delivery of acetylcholine receptor vesicles. Molecular Biology of the Cell 26:938–951. doi:10.1091/mbc.E14-06-1158
-
(2015)
Molecular Biology of the Cell
, vol.26
, pp. 938-951
-
-
Basu, S.1
Sladecek, S.2
de la Peña, M.3
Valenzuela, I.4
Akaaboune, M.5
Smal, I.6
Martin, K.7
Galjart, N.8
Brenner, H.R.9
-
9
-
-
84908701461
-
Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3(3 (GSK3(3)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends
-
Basu S, Sladecek S, Pemble H, Wittmann T, Slotman JA, van Cappellen W, Brenner HR, Galjart N. 2014. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3(3 (GSK3(3)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends. Journal of Biological Chemistry 289:30857–30867. doi:10.1074/jbc.M114.589457
-
(2014)
Journal of Biological Chemistry
, vol.289
, pp. 30857-30867
-
-
Basu, S.1
Sladecek, S.2
Pemble, H.3
Wittmann, T.4
Slotman, J.A.5
Van Cappellen, W.6
Brenner, H.R.7
Galjart, N.8
-
10
-
-
79957785372
-
P21(Cip1) regulates cell-substrate adhesion and interphase microtubule dynamics in untransformed human mammary epithelial cells
-
Bouchet BP, Fauvet F, Grelier G, Galmarini CM, Puisieux A. 2011. p21(Cip1) regulates cell-substrate adhesion and interphase microtubule dynamics in untransformed human mammary epithelial cells. European Journal of Cell Biology 90:631–641. doi:10.1016/j.ejcb.2011.03.002
-
(2011)
European Journal of Cell Biology
, vol.90
, pp. 631-641
-
-
Bouchet, B.P.1
Fauvet, F.2
Grelier, G.3
Galmarini, C.M.4
Puisieux, A.5
-
11
-
-
84893364894
-
Phase transitions and size scaling of membrane-less organelles
-
Brangwynne CP. 2013. Phase transitions and size scaling of membrane-less organelles. Journal of Cell Biology 203:875–881. doi:10.1083/jcb.201308087
-
(2013)
Journal of Cell Biology
, vol.203
, pp. 875-881
-
-
Brangwynne, C.P.1
-
12
-
-
84937636601
-
A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting
-
Byron A, Askari JA, Humphries JD, Jacquemet G, Koper EJ, Warwood S, Choi CK, Stroud MJ, Chen CS, Knight D, Humphries MJ. 2015. A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nature Communications 6:6135. doi:10.1038/ncomms7135
-
(2015)
Nature Communications
, vol.6
, pp. 6135
-
-
Byron, A.1
Askari, J.A.2
Humphries, J.D.3
Jacquemet, G.4
Koper, E.J.5
Warwood, S.6
Choi, C.K.7
Stroud, M.J.8
Chen, C.S.9
Knight, D.10
Humphries, M.J.11
-
14
-
-
59149094538
-
Stretching single talin rod molecules activates vinculin binding
-
del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. 2009. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641. doi:10.1126/science.1162912
-
(2009)
Science
, vol.323
, pp. 638-641
-
-
Del Rio, A.1
Perez-Jimenez, R.2
Liu, R.3
Roca-Cusachs, P.4
Fernandez, J.M.5
Sheetz, M.P.6
-
15
-
-
33750949610
-
Role of CLASP2 in microtubule stabilization and the regulation of persistent motility
-
Drabek K, van Ham M, Stepanova T, Draegestein K, van Horssen R, Sayas CL, Akhmanova A, Ten Hagen T, Smits R, Fodde R, Grosveld F, Galjart N. 2006. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Current Biology 16:2259–2264. doi:10.1016/j.cub.2006.09.065
-
(2006)
Current Biology
, vol.16
, pp. 2259-2264
-
-
Drabek, K.1
Van Ham, M.2
Stepanova, T.3
Draegestein, K.4
Van Horssen, R.5
Sayas, C.L.6
Akhmanova, A.7
Ten Hagen, T.8
Smits, R.9
Fodde, R.10
Grosveld, F.11
Galjart, N.12
-
16
-
-
20444370219
-
Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase
-
Ezratty EJ, Partridge MA, Gundersen GG. 2005. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature Cell Biology 7:581–590. doi:10.1038/ncb1262
-
(2005)
Nature Cell Biology
, vol.7
, pp. 581-590
-
-
Ezratty, E.J.1
Partridge, M.A.2
Gundersen, G.G.3
-
17
-
-
5444239061
-
Calpain-mediated proteolysis of talin regulates adhesion dynamics
-
Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A. 2004. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biology 6:977–983. doi:10.1038/ncb1175
-
(2004)
Nature Cell Biology
, vol.6
, pp. 977-983
-
-
Franco, S.J.1
Rodgers, M.A.2
Perrin, B.J.3
Han, J.4
Bennin, D.A.5
Critchley, D.R.6
Huttenlocher, A.7
-
19
-
-
84930404195
-
KANK deficiency leads to podocyte dysfunction and nephrotic syndrome
-
Gee HY, Zhang F, Ashraf S, Kohl S, Sadowski CE, Vega-Warner V, Zhou W, Lovric S, Fang H, Nettleton M, Zhu Jun-yi, Hoefele J, Weber LT, Podracka L, Boor A, Fehrenbach H, Innis JW, Washburn J, Levy S, Lifton RP, et al. 2015. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. Journal of Clinical Investigation 125:2375–2384. doi:10.1172/JCI79504
-
(2015)
Journal of Clinical Investigation
, vol.125
, pp. 2375-2384
-
-
Gee, H.Y.1
Zhang, F.2
Ashraf, S.3
Kohl, S.4
Sadowski, C.E.5
Vega-Warner, V.6
Zhou, W.7
Lovric, S.8
Fang, H.9
Nettleton, M.10
Jun-Yi, Z.11
Hoefele, J.12
Weber, L.T.13
Podracka, L.14
Boor, A.15
Fehrenbach, H.16
Innis, J.W.17
Washburn, J.18
Levy, S.19
Lifton, R.P.20
more..
-
20
-
-
77956510396
-
Central region of talin has a unique fold that binds vinculin and actin
-
Gingras AR, Bate N, Goult BT, Patel B, Kopp PM, Emsley J, Barsukov IL, Roberts GC, Critchley DR. 2010. Central region of talin has a unique fold that binds vinculin and actin. Journal of Biological Chemistry 285:29577–29587. doi:10.1074/jbc.M109.095455
-
(2010)
Journal of Biological Chemistry
, vol.285
, pp. 29577-29587
-
-
Gingras, A.R.1
Bate, N.2
Goult, B.T.3
Patel, B.4
Kopp, P.M.5
Emsley, J.6
Barsukov, I.L.7
Roberts, G.C.8
Critchley, D.R.9
-
21
-
-
84875439033
-
RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover
-
Goult BT, Zacharchenko T, Bate N, Tsang R, Hey F, Gingras AR, Elliott PR, Roberts GC, Ballestrem C, Critchley DR, Barsukov IL. 2013. RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover. Journal of Biological Chemistry 288:8238–8249. doi:10.1074/jbc.M112.438119
-
(2013)
Journal of Biological Chemistry
, vol.288
, pp. 8238-8249
-
-
Goult, B.T.1
Zacharchenko, T.2
Bate, N.3
Tsang, R.4
Hey, F.5
Gingras, A.R.6
Elliott, P.R.7
Roberts, G.C.8
Ballestrem, C.9
Critchley, D.R.10
Barsukov, I.L.11
-
22
-
-
34547414652
-
Rab6 regulates transport and targeting of exocytotic carriers
-
Grigoriev I, Splinter D, Keijzer N, Wulf PS, Demmers J, Ohtsuka T, Modesti M, Maly IV, Grosveld F, Hoogenraad CC, Akhmanova A. 2007. Rab6 regulates transport and targeting of exocytotic carriers. Developmental Cell 13: 305–314. doi:10.1016/j.devcel.2007.06.010
-
(2007)
Developmental Cell
, vol.13
, pp. 305-314
-
-
Grigoriev, I.1
Splinter, D.2
Keijzer, N.3
Wulf, P.S.4
Demmers, J.5
Ohtsuka, T.6
Modesti, M.7
Maly, I.V.8
Grosveld, F.9
Hoogenraad, C.C.10
Akhmanova, A.11
-
23
-
-
79958059534
-
Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers
-
Grigoriev I, Yu KL, Martinez-Sanchez E, Serra-Marques A, Smal I, Meijering E, Demmers J, Peränen J, Pasterkamp RJ, van der Sluijs P, Hoogenraad CC, Akhmanova A. 2011. Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers. Current Biology 21:967–974. doi:10.1016/j.cub.2011.04.030
-
(2011)
Current Biology
, vol.21
, pp. 967-974
-
-
Grigoriev, I.1
Yu, K.L.2
Martinez-Sanchez, E.3
Serra-Marques, A.4
Smal, I.5
Meijering, E.6
Demmers, J.7
Peränen, J.8
Pasterkamp, R.J.9
Van Der Sluijs, P.10
Hoogenraad, C.C.11
Akhmanova, A.12
-
24
-
-
84863471483
-
Molecular organization and plasticity of the cytomatrix at the active zone
-
Gundelfinger ED, Fejtova A. 2012. Molecular organization and plasticity of the cytomatrix at the active zone. Current Opinion in Neurobiology 22:423–430. doi:10.1016/j.conb.2011.10.005
-
(2012)
Current Opinion in Neurobiology
, vol.22
, pp. 423-430
-
-
Gundelfinger, E.D.1
Fejtova, A.2
-
25
-
-
77955184349
-
CAST and ELKS proteins: Structural and functional determinants of the presynaptic active zone
-
Hida Y, Ohtsuka T. 2010. CAST and ELKS proteins: structural and functional determinants of the presynaptic active zone. Journal of Biochemistry 148:131–137. doi:10.1093/jb/mvq065
-
(2010)
Journal of Biochemistry
, vol.148
, pp. 131-137
-
-
Hida, Y.1
Ohtsuka, T.2
-
26
-
-
67650627616
-
An EB1-binding motif acts as a microtubule tip localization signal
-
Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, Grigoriev I, van Rijssel FJ, Buey RM, Lawera A, Jelesarov I, Winkler FK, Wüthrich K, Akhmanova A, Steinmetz MO. 2009. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–376. doi:10.1016/j.cell.2009.04.065
-
(2009)
Cell
, vol.138
, pp. 366-376
-
-
Honnappa, S.1
Gouveia, S.M.2
Weisbrich, A.3
Damberger, F.F.4
Bhavesh, N.S.5
Jawhari, H.6
Grigoriev, I.7
Van Rijssel, F.J.8
Buey, R.M.9
Lawera, A.10
Jelesarov, I.11
Winkler, F.K.12
Wüthrich, K.13
Akhmanova, A.14
Steinmetz, M.O.15
-
27
-
-
77953146816
-
Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5a/b
-
Hotta A, Kawakatsu T, Nakatani T, Sato T, Matsui C, Sukezane T, Akagi T, Hamaji T, Grigoriev I, Akhmanova A, Takai Y, Mimori-Kiyosue Y. 2010. Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5a/b. Journal of Cell Biology 189:901–917. doi:10.1083/jcb.200910095
-
(2010)
Journal of Cell Biology
, vol.189
, pp. 901-917
-
-
Hotta, A.1
Kawakatsu, T.2
Nakatani, T.3
Sato, T.4
Matsui, C.5
Sukezane, T.6
Akagi, T.7
Hamaji, T.8
Grigoriev, I.9
Akhmanova, A.10
Takai, Y.11
Mimori-Kiyosue, Y.12
-
28
-
-
84865560483
-
Cell biology. Beyond oil and water–phase transitions in cells
-
Hyman AA, Simons K. 2012. Cell biology. Beyond oil and water–phase transitions in cells. Science 337:1047–1049. doi:10.1126/science.1223728
-
(2012)
Science
, vol.337
, pp. 1047-1049
-
-
Hyman, A.A.1
Simons, K.2
-
29
-
-
0026770377
-
Integrins: Versatility, modulation, and signaling in cell adhesion
-
Hynes RO. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25. doi:10.1016/0092-8674(92)90115-S
-
(1992)
Cell
, vol.69
, pp. 11-25
-
-
Hynes, R.O.1
-
30
-
-
79957895829
-
Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine-vulval attachment in Caenorhabditis elegans
-
Ihara S, Hagedorn EJ, Morrissey MA, Chi Q, Motegi F, Kramer JM, Sherwood DR. 2011. Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine-vulval attachment in Caenorhabditis elegans. Nature Cell Biology 13:641–651. doi:10.1038/ncb2233
-
(2011)
Nature Cell Biology
, vol.13
, pp. 641-651
-
-
Ihara, S.1
Hagedorn, E.J.2
Morrissey, M.A.3
Chi, Q.4
Motegi, F.5
Kramer, J.M.6
Sherwood, D.R.7
-
31
-
-
67650494721
-
A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane
-
Kakinuma N, Kiyama R. 2009. A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane. Biochemical and Biophysical Research Communications 386:639–644. doi:10.1016/j.bbrc.2009.06.109
-
(2009)
Biochemical and Biophysical Research Communications
, vol.386
, pp. 639-644
-
-
Kakinuma, N.1
Kiyama, R.2
-
32
-
-
43149106945
-
Kank regulates RhoA-dependent formation of actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling
-
Kakinuma N, Roy BC, Zhu Y, Wang Y, Kiyama R. 2008. Kank regulates RhoA-dependent formation of actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling. The Journal of Cell Biology 181:537–549. doi:10.1083/jcb.200707022
-
(2008)
The Journal of Cell Biology
, vol.181
, pp. 537-549
-
-
Kakinuma, N.1
Roy, B.C.2
Zhu, Y.3
Wang, Y.4
Kiyama, R.5
-
33
-
-
68549099628
-
Kank proteins: Structure, functions and diseases
-
Kakinuma N, Zhu Y, Wang Y, Roy BC, Kiyama R. 2009. Kank proteins: structure, functions and diseases. Cellular and Molecular Life Sciences 66:2651–2659. doi:10.1007/s00018-009-0038-y
-
(2009)
Cellular and Molecular Life Sciences
, vol.66
, pp. 2651-2659
-
-
Kakinuma, N.1
Zhu, Y.2
Wang, Y.3
Roy, B.C.4
Kiyama, R.5
-
34
-
-
35748972060
-
Semi-supervised learning for peptide identification from shotgun proteomics datasets
-
Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. 2007. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nature Methods 4:923–925. doi:10.1038/nmeth1113
-
(2007)
Nature Methods
, vol.4
, pp. 923-925
-
-
Käll, L.1
Canterbury, J.D.2
Weston, J.3
Noble, W.S.4
Maccoss, M.J.5
-
35
-
-
0032872870
-
Microtubule targeting of substrate contacts promotes their relaxation and dissociation
-
Kaverina I, Krylyshkina O, Small JV. 1999. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. The Journal of Cell Biology 146:1033–1044. doi:10.1083/jcb.146.5.1033
-
(1999)
The Journal of Cell Biology
, vol.146
, pp. 1033-1044
-
-
Kaverina, I.1
Krylyshkina, O.2
Small, J.V.3
-
36
-
-
0032514208
-
Targeting, capture, and stabilization of microtubules at early focal adhesions
-
Kaverina I, Rottner K, Small JV. 1998. Targeting, capture, and stabilization of microtubules at early focal adhesions. The Journal of Cell Biology 142:181–190. doi:10.1083/jcb.142.1.181
-
(1998)
The Journal of Cell Biology
, vol.142
, pp. 181-190
-
-
Kaverina, I.1
Rottner, K.2
Small, J.V.3
-
37
-
-
82755184126
-
Regulation of cell migration by dynamic microtubules
-
Kaverina I, Straube A. 2011. Regulation of cell migration by dynamic microtubules. Seminars in Cell & Developmental Biology 22:968–974. doi:10.1016/j.semcdb.2011.09.017
-
(2011)
Seminars in Cell & Developmental Biology
, vol.22
, pp. 968-974
-
-
Kaverina, I.1
Straube, A.2
-
38
-
-
18544369905
-
LL5beta: A regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction
-
Kishi M, Kummer TT, Eglen SJ, Sanes JR. 2005. LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. The Journal of Cell Biology 169:355–366. doi:10.1083/jcb.200411012
-
(2005)
The Journal of Cell Biology
, vol.169
, pp. 355-366
-
-
Kishi, M.1
Kummer, T.T.2
Eglen, S.J.3
Sanes, J.R.4
-
39
-
-
0344845405
-
ACF7: An essential integrator of microtubule dynamics
-
Kodama A, Karakesisoglou I, Wong E, Vaezi A, Fuchs E. 2003. ACF7: an essential integrator of microtubule dynamics. Cell 115:343–354. doi:10.1016/S0092-8674(03)00813-4
-
(2003)
Cell
, vol.115
, pp. 343-354
-
-
Kodama, A.1
Karakesisoglou, I.2
Wong, E.3
Vaezi, A.4
Fuchs, E.5
-
40
-
-
0038795546
-
Nanometer targeting of microtubules to focal adhesions
-
Krylyshkina O, Anderson KI, Kaverina I, Upmann I, Manstein DJ, Small JV, Toomre DK. 2003. Nanometer targeting of microtubules to focal adhesions. The Journal of Cell Biology 161:853–859. doi:10.1083/jcb.200301102
-
(2003)
The Journal of Cell Biology
, vol.161
, pp. 853-859
-
-
Krylyshkina, O.1
Erson, K.I.2
Kaverina, I.3
Upmann, I.4
Manstein, D.J.5
Small, J.V.6
Toomre, D.K.7
-
41
-
-
33745506389
-
CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta
-
Lansbergen G, Grigoriev I, Mimori-Kiyosue Y, Ohtsuka T, Higa S, Kitajima I, Demmers J, Galjart N, Houtsmuller AB, Grosveld F, Akhmanova A. 2006. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta. Developmental Cell 11:21–32. doi:10.1016/j.devcel.2006.05.012
-
(2006)
Developmental Cell
, vol.11
, pp. 21-32
-
-
Lansbergen, G.1
Grigoriev, I.2
Mimori-Kiyosue, Y.3
Ohtsuka, T.4
Higa, S.5
Kitajima, I.6
Demmers, J.7
Galjart, N.8
Houtsmuller, A.B.9
Grosveld, F.10
Akhmanova, A.11
-
42
-
-
82755165435
-
Effects of brefeldin A-inhibited guanine nucleotide-exchange (BIG) 1 and KANK1 proteins on cell polarity and directed migration during wound healing
-
Li C-C, Kuo J-C, Waterman CM, Kiyama R, Moss J, Vaughan M. 2011. Effects of brefeldin A-inhibited guanine nucleotide-exchange (BIG) 1 and KANK1 proteins on cell polarity and directed migration during wound healing. PNAS 108:19228–19233. doi:10.1073/pnas.1117011108
-
(2011)
PNAS
, vol.108
, pp. 19228-19233
-
-
Li, C.-C.1
Kuo, J.-C.2
Waterman, C.M.3
Kiyama, R.4
Moss, J.5
Vaughan, M.6
-
43
-
-
19944429410
-
CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex
-
Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S, Akhmanova A. 2005. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. The Journal of Cell Biology 168:141–153. doi:10.1083/jcb.200405094
-
(2005)
The Journal of Cell Biology
, vol.168
, pp. 141-153
-
-
Mimori-Kiyosue, Y.1
Grigoriev, I.2
Lansbergen, G.3
Sasaki, H.4
Matsui, C.5
Severin, F.6
Galjart, N.7
Grosveld, F.8
Vorobjev, I.9
Tsukita, S.10
Akhmanova, A.11
-
44
-
-
84884241082
-
Epiblast integrity requires CLASP and Dystroglycan-mediated microtubule anchoring to the basal cortex
-
Nakaya Y, Sukowati EW, Sheng G. 2013. Epiblast integrity requires CLASP and Dystroglycan-mediated microtubule anchoring to the basal cortex. The Journal of Cell Biology 202:637–651. doi:10.1083/jcb.201302075
-
(2013)
The Journal of Cell Biology
, vol.202
, pp. 637-651
-
-
Nakaya, Y.1
Sukowati, E.W.2
Sheng, G.3
-
45
-
-
84859387007
-
Tension is required but not sufficient for focal adhesion maturation without a stress fiber template
-
Oakes PW, Beckham Y, Stricker J, Gardel ML. 2012. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. The Journal of Cell Biology 196:363–374. doi:10.1083/jcb.201107042
-
(2012)
The Journal of Cell Biology
, vol.196
, pp. 363-374
-
-
Oakes, P.W.1
Beckham, Y.2
Stricker, J.3
Gardel, M.L.4
-
46
-
-
0037741121
-
LL5beta is a phosphatidylinositol (3,4, 5)-trisphosphate sensor that can bind the cytoskeletal adaptor, gamma-filamin
-
Paranavitane V, Coadwell WJ, Eguinoa A, Hawkins PT, Stephens L. 2003. LL5beta is a phosphatidylinositol (3,4, 5)-trisphosphate sensor that can bind the cytoskeletal adaptor, gamma-filamin. Journal of Biological Chemistry 278:1328–1335. doi:10.1074/jbc.M208352200
-
(2003)
Journal of Biological Chemistry
, vol.278
, pp. 1328-1335
-
-
Paranavitane, V.1
Coadwell, W.J.2
Eguinoa, A.3
Hawkins, P.T.4
Stephens, L.5
-
48
-
-
70849083451
-
Podosomes are present in a postsynaptic apparatus and participate in its maturation
-
Proszynski TJ, Gingras J, Valdez G, Krzewski K, Sanes JR. 2009. Podosomes are present in a postsynaptic apparatus and participate in its maturation. PNAS 106:18373–18378. doi:10.1073/pnas.0910391106
-
(2009)
PNAS
, vol.106
, pp. 18373-18378
-
-
Proszynski, T.J.1
Gingras, J.2
Valdez, G.3
Krzewski, K.4
Sanes, J.R.5
-
49
-
-
84879858812
-
Amotl2 interacts with LL5, localizes to podosomes and regulates postsynaptic differentiation in muscle
-
Proszynski TJ, Sanes JR. 2013. Amotl2 interacts with LL5, localizes to podosomes and regulates postsynaptic differentiation in muscle. Journal of Cell Science 126:2225–2235. doi:10.1242/jcs.121327
-
(2013)
Journal of Cell Science
, vol.126
, pp. 2225-2235
-
-
Proszynski, T.J.1
Sanes, J.R.2
-
50
-
-
27944470957
-
Talin phosphorylation sites mapped by mass spectrometry
-
Ratnikov B, Ptak C, Han J, Shabanowitz J, Hunt DF, Ginsberg MH. 2005. Talin phosphorylation sites mapped by mass spectrometry. Journal of Cell Science 118:4921–4923. doi:10.1242/jcs.02682
-
(2005)
Journal of Cell Science
, vol.118
, pp. 4921-4923
-
-
Ratnikov, B.1
Ptak, C.2
Han, J.3
Shabanowitz, J.4
Hunt, D.F.5
Ginsberg, M.H.6
-
51
-
-
60849108337
-
Kank attenuates actin remodeling by preventing interaction between IRSp53 and Rac1
-
Roy BC, Kakinuma N, Kiyama R. 2009. Kank attenuates actin remodeling by preventing interaction between IRSp53 and Rac1. The Journal of Cell Biology 184:253–267. doi:10.1083/jcb.200805147
-
(2009)
The Journal of Cell Biology
, vol.184
, pp. 253-267
-
-
Roy, B.C.1
Kakinuma, N.2
Kiyama, R.3
-
52
-
-
84866469370
-
Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane
-
Schmidt N, Basu S, Sladecek S, Gatti S, van Haren J, Treves S, Pielage J, Galjart N, Brenner HR. 2012. Agrin regulates CLASP2-mediated capture of microtubules at the neuromuscular junction synaptic membrane. The Journal of Cell Biology 198:421–437. doi:10.1083/jcb.201111130
-
(2012)
The Journal of Cell Biology
, vol.198
, pp. 421-437
-
-
Schmidt, N.1
Basu, S.2
Sladecek, S.3
Gatti, S.4
Van Haren, J.5
Treves, S.6
Pielage, J.7
Galjart, N.8
Brenner, H.R.9
-
53
-
-
84921768646
-
Structure calculation, refinement and validation using CcpNmr Analysis
-
Skinner SP, Goult BT, Fogh RH, Boucher W, Stevens TJ, Laue ED, Vuister GW. 2015. Structure calculation, refinement and validation using CcpNmr Analysis. Acta Crystallographica Section D Biological Crystallography 71:154–161. doi:10.1107/S1399004714026662
-
(2015)
Acta Crystallographica Section D Biological Crystallography
, vol.71
, pp. 154-161
-
-
Skinner, S.P.1
Goult, B.T.2
Fogh, R.H.3
Boucher, W.4
Stevens, T.J.5
Laue, E.D.6
Vuister, G.W.7
-
54
-
-
0037221714
-
Microtubules meet substrate adhesions to arrange cell polarity
-
Small JV, Kaverina I. 2003. Microtubules meet substrate adhesions to arrange cell polarity. Current Opinion in Cell Biology 15:40–47. doi:10.1016/S0955-0674(02)00008-X
-
(2003)
Current Opinion in Cell Biology
, vol.15
, pp. 40-47
-
-
Small, J.V.1
Kaverina, I.2
-
55
-
-
36749050466
-
Liprin-alpha proteins: Scaffold molecules for synapse maturation
-
Spangler SA, Hoogenraad CC. 2007. Liprin-alpha proteins: scaffold molecules for synapse maturation. Biochemical Society Transactions 35:1278–1282. doi:10.1042/BST0351278
-
(2007)
Biochemical Society Transactions
, vol.35
, pp. 1278-1282
-
-
Spangler, S.A.1
Hoogenraad, C.C.2
-
56
-
-
84866397855
-
Targeting and transport: How microtubules control focal adhesion dynamics
-
Stehbens S, Wittmann T. 2012. Targeting and transport: how microtubules control focal adhesion dynamics. The Journal of Cell Biology 198:481–489. doi:10.1083/jcb.201206050
-
(2012)
The Journal of Cell Biology
, vol.198
, pp. 481-489
-
-
Stehbens, S.1
Wittmann, T.2
-
57
-
-
84901819506
-
CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover
-
Stehbens SJ, Paszek M, Pemble H, Ettinger A, Gierke S, Wittmann T. 2014. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nature Cell Biology 16:561–573. doi:10.1038/ncb2975
-
(2014)
Nature Cell Biology
, vol.16
, pp. 561-573
-
-
Stehbens, S.J.1
Paszek, M.2
Pemble, H.3
Ettinger, A.4
Gierke, S.5
Wittmann, T.6
-
58
-
-
84870808809
-
Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions
-
Theisen U, Straube E, Straube A. 2012. Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions. Developmental Cell 23:1153–1166. doi:10.1016/j.devcel.2012.11.005
-
(2012)
Developmental Cell
, vol.23
, pp. 1153-1166
-
-
Theisen, U.1
Straube, E.2
Straube, A.3
-
59
-
-
84886639343
-
CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor
-
van der Vaart B, van Riel WE, Doodhi H, Kevenaar JT, Katrukha EA, Gumy L, Bouchet BP, Grigoriev I, Spangler SA, Yu KL, Wulf PS, Wu J, Lansbergen G, van Battum EY, Pasterkamp RJ, Mimori-Kiyosue Y, Demmers J, Olieric N, Maly IV, Hoogenraad CC, et al. 2013. CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor. Developmental Cell 27:145–160. doi:10.1016/j.devcel.2013.09.010
-
(2013)
Developmental Cell
, vol.27
, pp. 145-160
-
-
Van Der Vaart, B.1
Van Riel, W.E.2
Doodhi, H.3
Kevenaar, J.T.4
Katrukha, E.A.5
Gumy, L.6
Bouchet, B.P.7
Grigoriev, I.8
Spangler, S.A.9
Yu, K.L.10
Wulf, P.S.11
Wu, J.12
Lansbergen, G.13
Van Battum, E.Y.14
Pasterkamp, R.J.15
Mimori-Kiyosue, Y.16
Demmers, J.17
Olieric, N.18
Maly, I.V.19
Hoogenraad, C.C.20
more..
-
60
-
-
84959457637
-
The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes
-
van Zundert GC, Rodrigues JP, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond AS, van Dijk M, de Vries SJ, Bonvin AM. 2016. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology 428:720–725. doi:10.1016/j.jmb.2015.09.014
-
(2016)
Journal of Molecular Biology
, vol.428
, pp. 720-725
-
-
Van Zundert, G.C.1
Rodrigues, J.P.2
Trellet, M.3
Schmitz, C.4
Kastritis, P.L.5
Karaca, E.6
Melquiond, A.S.7
Van Dijk, M.8
De Vries, S.J.9
Bonvin, A.M.10
-
61
-
-
84867872264
-
Assembly and disassembly of cell matrix adhesions
-
Wehrle-Haller B. 2012. Assembly and disassembly of cell matrix adhesions. Current Opinion in Cell Biology 24: 569–581. doi:10.1016/j.ceb.2012.06.010
-
(2012)
Current Opinion in Cell Biology
, vol.24
, pp. 569-581
-
-
Wehrle-Haller, B.1
-
62
-
-
0029364052
-
1H, 13C and 15N chemical shift referencing in biomolecular NMR
-
Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD. 1995. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. Journal of Biomolecular NMR 6:135–140. doi:10.1007/BF00211777
-
(1995)
Journal of Biomolecular NMR
, vol.6
, pp. 135-140
-
-
Wishart, D.S.1
Bigam, C.G.2
Yao, J.3
Abildgaard, F.4
Dyson, H.J.5
Oldfield, E.6
Markley, J.L.7
Sykes, B.D.8
-
64
-
-
84898467976
-
Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
-
Yao M, Goult BT, Chen H, Cong P, Sheetz MP, Yan J. 2014. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Scientific Reports 4:4610. doi:10.1038/srep04610
-
(2014)
Scientific Reports
, vol.4
, pp. 4610
-
-
Yao, M.1
Goult, B.T.2
Chen, H.3
Cong, P.4
Sheetz, M.P.5
Yan, J.6
-
65
-
-
84977675071
-
The mechanical response of talin
-
Yao M, Goult BT, Klapholz B, Hu X, Toseland CP, Guo Y, Cong P, Sheetz MP, Yan J. 2016. The mechanical response of talin. Nature Communications 7:11966. doi:10.1038/ncomms11966
-
(2016)
Nature Communications
, vol.7
-
-
Yao, M.1
Goult, B.T.2
Klapholz, B.3
Hu, X.4
Toseland, C.P.5
Guo, Y.6
Cong, P.7
Sheetz, M.P.8
Yan, J.9
-
66
-
-
84918495009
-
Microtubules regulate focal adhesion dynamics through MAP4K4
-
Yue J, Xie M, Gou X, Lee P, Schneider MD, Wu X. 2014. Microtubules regulate focal adhesion dynamics through MAP4K4. Developmental Cell 31:572–585. doi:10.1016/j.devcel.2014.10.025
-
(2014)
Developmental Cell
, vol.31
, pp. 572-585
-
-
Yue, J.1
Xie, M.2
Gou, X.3
Lee, P.4
Schneider, M.D.5
Wu, X.6
-
67
-
-
84976518915
-
LD motif recognition by talin: Structure of the talin-DLC1 complex
-
Zacharchenko T, Qian X, Goult BT, Jethwa D, Almeida TB, Ballestrem C, Critchley DR, Lowy DR, Barsukov IL. 2016. LD motif recognition by talin: structure of the talin-DLC1 complex. Structure 24:1130–1141. doi:10.1016/j.str.2016.04.016
-
(2016)
Structure
, vol.24
, pp. 1130-1141
-
-
Zacharchenko, T.1
Qian, X.2
Goult, B.T.3
Jethwa, D.4
Almeida, T.B.5
Ballestrem, C.6
Critchley, D.R.7
Lowy, D.R.8
Barsukov, I.L.9
|