-
1
-
-
84982749605
-
-
retrieved April 1, 2015
-
http://eilv.cie.co.at/term/580, retrieved April 1, 2015.
-
-
-
-
5
-
-
84982707012
-
-
retrieved April 1, 2015
-
http://www.ipac.caltech.edu/outreach/Edu/Regions/irregions.html, retrieved April 1, 2015.
-
-
-
-
6
-
-
84982749609
-
-
Friedman, Photonics Rules of Thumb (McGraw-Hill
-
J. L. Miller, E. Friedman, and E. Friedman, Photonics Rules of Thumb (McGraw-Hill, 2003).
-
(2003)
And E
-
-
Miller, J.L.1
Friedman, E.2
-
7
-
-
84901023030
-
Multimaterial rod-in-tube coextrusion for robust mid-infrared chalcogenide fibers
-
G. Tao, S. Shabahang, H. Ren, Z. Yang, X. Wang, and A. F. Abouraddy, “Multimaterial rod-in-tube coextrusion for robust mid-infrared chalcogenide fibers,” Proc. SPIE 9, 898223 (2014).
-
(2014)
Proc. SPIE
, vol.9
-
-
Tao, G.1
Shabahang, S.2
Ren, H.3
Yang, Z.4
Wang, X.5
Abouraddy, A.F.6
-
8
-
-
79953854864
-
High-performance midinfrared quantum cascade lasers
-
F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
-
(2010)
Opt. Eng.
, vol.49
-
-
Capasso, F.1
-
9
-
-
0001841429
-
Recent developments in infrared fiber optics
-
N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5, 69–80 (1965).
-
(1965)
Infrared Phys
, vol.5
, pp. 69-80
-
-
Kapany, N.S.1
Simms, R.J.2
-
10
-
-
84877714800
-
Multimaterial fibers
-
G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3, 349–368 (2012).
-
(2012)
Int. J. Appl. Glass Sci.
, vol.3
, pp. 349-368
-
-
Tao, G.1
Stolyarov, A.M.2
Abouraddy, A.F.3
-
11
-
-
34247850782
-
Towards multimaterial multifunctional fibres that see, hear, sense and communicate
-
A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
-
(2007)
Nat. Mater.
, vol.6
, pp. 336-347
-
-
Abouraddy, A.F.1
Bayindir, M.2
Benoit, G.3
Hart, S.D.4
Kuriki, K.5
Orf, N.6
Shapira, O.7
Sorin, F.8
Temelkuran, B.9
Fink, Y.10
-
12
-
-
79953698764
-
Development of new tellurite fibers for mid-IR applications
-
IEEE
-
J. Toulouse, A. Lin, A. Ryaznyanskiy, A. Belwalkar, C. Guintrand, C. Lafontaine, W. Misiolek, and I. Biaggio, “Development of new tellurite fibers for mid-IR applications,” in Winter Topicals (WTM) (IEEE, 2011), pp. 185–186.
-
(2011)
Winter Topicals (WTM)
, pp. 185-186
-
-
Toulouse, J.1
Lin, A.2
Ryaznyanskiy, A.3
Belwalkar, A.4
Guintrand, C.5
Lafontaine, C.6
Misiolek, W.7
Biaggio, I.8
-
13
-
-
84863682017
-
Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers
-
G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
-
(2012)
Opt. Lett.
, vol.37
, pp. 2751-2753
-
-
Tao, G.1
Shabahang, S.2
Banaei, E.-H.3
Kaufman, J.J.4
Abouraddy, A.F.5
-
14
-
-
80053940950
-
Supercontinuum generation in chalcogenide- silica step-index fibers
-
N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide- silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
-
(2011)
Opt. Express
, vol.19
, pp. 21003-21010
-
-
Granzow, N.1
Stark, S.P.2
Schmidt, M.A.3
Tverjanovich, A.S.4
Wondraczek, L.5
Russell, P.S.J.6
-
15
-
-
84897973265
-
Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber
-
T. Cheng, W. Gao, H. Kawashima, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber,” Opt. Lett. 39, 2145–2147 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 2145-2147
-
-
Cheng, T.1
Gao, W.2
Kawashima, H.3
Deng, D.4
Liao, M.5
Matsumoto, M.6
Misumi, T.7
Suzuki, T.8
Ohishi, Y.9
-
16
-
-
77749289146
-
Binary III–V semiconductor core optical fiber
-
J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III–V semiconductor core optical fiber,” Opt. Express 18, 4972–4979 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 4972-4979
-
-
Ballato, J.1
Hawkins, T.2
Foy, P.3
McMillen, C.4
Burka, L.5
Reppert, J.6
Podila, R.7
Rao, A.M.8
Rice, R.R.9
-
17
-
-
79953796765
-
Zinc selenide optical fibers
-
J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23, 1647–1651 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 1647-1651
-
-
Sparks, J.R.1
He, R.2
Healy, N.3
Krishnamurthi, M.4
Peacock, A.C.5
Sazio, P.J.A.6
Gopalan, V.7
Badding, J.V.8
-
18
-
-
73049104445
-
Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions
-
Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21, 1804–1806 (2009).
-
(2009)
IEEE Photon. Technol. Lett.
, vol.21
, pp. 1804-1806
-
-
Lian, Z.1
Li, Q.2
Furniss, D.3
Benson, T.M.4
Seddon, A.B.5
-
19
-
-
84881167959
-
Infrared optical fibers for sensors
-
Optical Society of America, paper T2A.3
-
J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.
-
(2012)
International Conference on Fibre Optics and Photonics, OSA Technical Digest (Online)
-
-
Sanghera, J.S.1
Shaw, B.2
Gattass, R.3
Busse, L.4
Kim, W.5
Bayya, S.6
Gibson, D.7
Nguyen, V.8
Kung, F.9
Chin, G.10
Baker, C.11
Ewing, K.12
Aggarwal, I.13
-
20
-
-
78049437662
-
Chalcogenide glass hollow core photonic crystal fibers
-
F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32, 1532–1539 (2010).
-
(2010)
Opt. Mater.
, vol.32
, pp. 1532-1539
-
-
Désévédavy, F.1
Renversez, G.2
Troles, J.3
Houizot, P.4
Brilland, L.5
Vasilief, I.6
Coulombier, Q.7
Traynor, N.8
Smektala, F.9
Adam, J.-L.10
-
22
-
-
84982728514
-
-
retrieved April 1, 2015
-
www.thorlabs.com, retrieved April 1, 2015.
-
-
-
-
23
-
-
84982750044
-
-
retrieved April 1, 2015
-
www.npphotonics.com, retrieved April 1, 2015.
-
-
-
-
24
-
-
84982669095
-
-
retrieved April 1, 2015
-
www.irflex.com, retrieved April 1, 2015.
-
-
-
-
25
-
-
84982667040
-
-
retrieved April 1, 2015
-
www.coractive.com, retrieved April 1, 2015.
-
-
-
-
26
-
-
84857872911
-
Integration of gigahertzbandwidth semiconductor devices inside microstructured optical fibres
-
R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertzbandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
-
(2012)
Nat. Photonics
, vol.6
, pp. 174-179
-
-
He, R.1
Sazio, P.J.A.2
Peacock, A.C.3
Healy, N.4
Sparks, J.R.5
Krishnamurthi, M.6
Gopalan, V.7
Badding, J.V.8
-
27
-
-
84866358334
-
Sapphire-derived all-glass optical fibres
-
P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 629–635 (2012).
-
(2012)
Nat. Photonics
, vol.6
, pp. 629-635
-
-
Dragic, P.1
Hawkins, T.2
Foy, P.3
Morris, S.4
Ballato, J.5
-
28
-
-
60549094056
-
Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores
-
H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646–2657 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 2646-2657
-
-
Ebendorff-Heidepriem, H.1
Warren-Smith, S.C.2
Monro, T.M.3
-
29
-
-
79961134286
-
Fourthorder cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm
-
M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourthorder cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36, 2859–2861 (2011).
-
(2011)
Opt. Lett.
, vol.36
, pp. 2859-2861
-
-
Duhant, M.1
Renard, W.2
Canat, G.3
Nguyen, T.N.4
Smektala, F.5
Troles, J.6
Coulombier, Q.7
Toupin, P.8
Brilland, L.9
Bourdon, P.10
Renversez, G.11
-
30
-
-
77749298258
-
Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers
-
M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 4547-4556
-
-
El-Amraoui, M.1
Fatome, J.2
Jules, J.C.3
Kibler, B.4
Gadret, G.5
Fortier, C.6
Smektala, F.7
Skripatchev, I.8
Polacchini, C.F.9
Messaddeq, Y.10
Troles, J.11
Brilland, L.12
Szpulak, M.13
Renversez, G.14
-
31
-
-
84870615666
-
Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers
-
I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012)
-
(2012)
Opt. Express
, vol.20
, pp. 27083-27093
-
-
Savelii, I.1
Mouawad, O.2
Fatome, J.3
Kibler, B.4
Désévédavy, F.5
Gadret, G.6
Jules, J.C.7
Bony, P.Y.8
Kawashima, H.9
Gao, W.10
Kohoutek, T.11
Suzuki, T.12
Ohishi, Y.13
Smektala, F.14
-
32
-
-
0032573382
-
A dielectric omnidirectional reflector
-
Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
-
(1998)
Science
, vol.282
, pp. 1679-1682
-
-
Fink, Y.1
Winn, J.N.2
Fan, S.3
Chen, C.4
Michel, J.5
Joannopoulos, J.D.6
Thomas, E.L.7
-
33
-
-
84982721086
-
-
retrieved April 1, 2015
-
www.omni‑guide.com, retrieved April 1, 2015.
-
-
-
-
34
-
-
78650058871
-
Progress in rare-earth-doped mid-infrared fiber lasers
-
A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 26704-26719
-
-
Seddon, A.B.1
Tang, Z.2
Furniss, D.3
Sujecki, S.4
Benson, T.M.5
-
35
-
-
0041887388
-
Photonic crystal fibres
-
J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
-
(2003)
Nature
, vol.424
, pp. 847-851
-
-
Knight, J.C.1
-
36
-
-
0037449540
-
Photonic crystal fibers
-
P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
-
(2003)
Science
, vol.299
, pp. 358-362
-
-
Russell, P.1
-
37
-
-
84863485093
-
Towards high-power mid-infrared emission from a fibre laser
-
S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
-
(2012)
Nat. Photonics
, vol.6
, pp. 423-431
-
-
Jackson, S.D.1
-
40
-
-
0024037103
-
Polymer optical fibres
-
C. Emslie, “Polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
-
(1988)
J. Mater. Sci.
, vol.23
, pp. 2281-2293
-
-
Emslie, C.1
-
42
-
-
84982767772
-
-
retrieved April 1
-
http://www.amorphousmaterials.com/, retrieved April 1, 2015.
-
(2015)
-
-
-
43
-
-
84898073456
-
Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation
-
S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31, 450–457 (2014).
-
(2014)
J. Opt. Soc. Am. B
, vol.31
, pp. 450-457
-
-
Shabahang, S.1
Tao, G.2
Marquez, M.P.3
Hu, H.4
Ensley, T.R.5
Delfyett, P.J.6
Abouraddy, A.F.7
-
44
-
-
84869178582
-
Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses
-
S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
-
(2012)
Opt. Lett.
, vol.37
, pp. 4639-4641
-
-
Shabahang, S.1
Marquez, M.P.2
Tao, G.3
Piracha, M.U.4
Nguyen, D.5
Delfyett, P.J.6
Abouraddy, A.F.7
-
45
-
-
9544224167
-
Linear and nonlinear optical characterization of tellurium based chalcogenide glasses
-
S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242, 313–319 (2004).
-
(2004)
Opt. Commun.
, vol.242
, pp. 313-319
-
-
Cherukulappurath, S.1
Guignard, M.2
Marchand, C.3
Smektala, F.4
Boudebs, G.5
-
47
-
-
0002354459
-
Optical properties of fluoride glasses: A review
-
F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
-
(1995)
J. Non-Cryst. Solids
, vol.184
, pp. 9-20
-
-
Gan, F.1
-
48
-
-
0031550047
-
Material dispersion and its compositional parameter of oxide glasses
-
S. Fujino and K. Morinaga, “Material dispersion and its compositional parameter of oxide glasses,” J. Non-Cryst. Solids 222, 316–320 (1997).
-
(1997)
J. Non-Cryst. Solids
, vol.222
, pp. 316-320
-
-
Fujino, S.1
Morinaga, K.2
-
49
-
-
0023328414
-
Progress in fluoride fibres for optical communications, British Telecommun
-
P. France, S. Carter, M. Moore, and C. Day, “Progress in fluoride fibres for optical communications,” British Telecommun. Technol. J. 5, 28–44 (1987).
-
(1987)
Technol. J.
, vol.5
, pp. 28-44
-
-
France, P.1
Carter, S.2
Moore, M.3
Day, C.4
-
50
-
-
84982756615
-
-
The Australian National University, Canberra ACT 2600, Australiapersonal communication
-
R. Wang, Laser Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2600, Australia (personal communication, 2015).
-
(2015)
Laser Physics Centre, Research School of Physics and Engineering
-
-
Wang, R.1
-
52
-
-
84887111103
-
How long wavelengths can one extract from silicacore fibers?
-
J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silicacore fibers?” Opt. Lett. 38, 4518–4521 (2013).
-
(2013)
Opt. Lett.
, vol.38
, pp. 4518-4521
-
-
Lægsgaard, J.1
Tu, H.2
-
53
-
-
38849149693
-
Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature
-
R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
-
(2007)
Appl. Opt.
, vol.46
, pp. 8118-8133
-
-
Kitamura, R.1
Pilon, L.2
Jonasz, M.3
-
54
-
-
84884280862
-
Silica hollow core microstructured fibres for mid-infrared surgical applications
-
A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
-
(2013)
J. Non-Cryst. Solids
, vol.377
, pp. 236-239
-
-
Urich, A.1
Maier, R.R.J.2
Yu, F.3
Knight, J.C.4
Hand, D.P.5
Shephard, J.D.6
-
55
-
-
84982727433
-
-
retrieved April 1, 2015
-
http://www.newport.com/Optical‑Materials/144943/1033/content.aspx, retrieved April 1, 2015.
-
-
-
-
56
-
-
84880551191
-
Efficient 2.9 μm fluorozirconate glass waveguide chip laser
-
D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38, 2588–2591 (2013).
-
(2013)
Opt. Lett
, vol.38
, pp. 2588-2591
-
-
Lancaster, D.G.1
Gross, S.2
Ebendorff-Heidepriem, H.3
Withford, M.J.4
Monro, T.M.5
Jackson, S.D.6
-
57
-
-
69949106822
-
Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: Erbium doped lanthanum-tellurite glass
-
M. R. Oermann, H. Ebendorff-Heidepriem, Y. Li, T.-C. Foo, and T. M. Monro, “Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass,” Opt. Express 17, 15578–15584 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 15578-15584
-
-
Oermann, M.R.1
Ebendorff-Heidepriem, H.2
Li, Y.3
Foo, T.-C.4
Monro, T.M.5
-
58
-
-
70350656706
-
-
Manufacturing, Applications (Springer
-
E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, 2009).
-
(2009)
Sapphire: Material
-
-
Dobrovinskaya, E.R.1
Lytvynov, L.A.2
Pishchik, V.3
-
59
-
-
0033349695
-
Performance stability of the sapphire fiber and cladding under high temperature
-
Y. Shen, L. Tong, and S. Chen, “Performance stability of the sapphire fiber and cladding under high temperature,” Proc. SPIE 3852, 134 (1999).
-
(1999)
Proc. SPIE
, vol.3852
-
-
Shen, Y.1
Tong, L.2
Chen, S.3
-
60
-
-
84879413070
-
4 thin film as sapphire optical fiber cladding for high temperature applications
-
4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
-
(2013)
Thin Solid Films
, vol.539
, pp. 81-87
-
-
Jiang, H.1
Cao, Z.2
Yang, R.3
Yuan, L.4
Xiao, H.5
Dong, J.6
-
61
-
-
0348128361
-
Optical properties of clad and unclad sapphire fiber
-
R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).
-
(1994)
Proc. SPIE
, vol.2131
, pp. 56-61
-
-
Nubling, R.K.1
Kozodoy, R.L.2
Harrington, J.A.3
-
62
-
-
84904726383
-
Processing and characterization of polycrystalline YAG (Yttrium aluminum garnet) core-clad fibers
-
H. J. Kim, G. E. Fair, S. A. Potticary, M. J. O’Malley, and N. G. Usechak, “Processing and characterization of polycrystalline YAG (yttrium aluminum garnet) core-clad fibers,” Proc. SPIE 9081, 908103 (2014).
-
(2014)
Proc. SPIE
, vol.9081
-
-
Kim, H.J.1
Fair, G.E.2
Potticary, S.A.3
O’Malley, M.J.4
Usechak, N.G.5
-
63
-
-
0028479992
-
Tellurite glass: A new candidate for fiber devices
-
J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
-
(1994)
Opt. Mater.
, vol.3
, pp. 187-203
-
-
Wang, J.1
Vogel, E.2
Snitzer, E.3
-
64
-
-
69749085932
-
Fluoride glass fiber: State of the art
-
M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N (2009).
-
(2009)
Proc. SPIE
, vol.7316
-
-
Saad, M.1
-
65
-
-
0020757959
-
Cadmium halide glasses. II. Chloride glasses
-
M. Poulain, M. Matecki, J.-L. Mouric, and M. Poulain, “Cadmium halide glasses. II. Chloride glasses,” Mater. Res. Bull. 18, 631–636 (1983).
-
(1983)
Mater. Res. Bull.
, vol.18
, pp. 631-636
-
-
Poulain, M.1
Matecki, M.2
Mouric, J.-L.3
Poulain, M.4
-
68
-
-
35748985544
-
Phase-change materials for rewriteable data storage
-
M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
-
(2007)
Nat. Mater.
, vol.6
, pp. 824-832
-
-
Wuttig, M.1
Yamada, N.2
-
70
-
-
84867095067
-
Evanescent wave optical micro-sensor based on chalcogenide glass
-
J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
-
(2012)
Sens. Actuators B
, vol.173
, pp. 468-476
-
-
Charrier, J.1
Brandily, M.-L.2
Lhermite, H.3
Michel, K.4
Bureau, B.5
Verger, F.6
Nazabal, V.7
-
71
-
-
84905233068
-
Integrated flexible chalcogenide glass photonic devices
-
L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
-
(2014)
Nat. Photonics
, vol.8
, pp. 643-649
-
-
Li, L.1
Lin, H.2
Qiao, S.3
Zou, Y.4
Danto, S.5
Richardson, K.6
Musgraves, J.D.7
Lu, N.8
Hu, J.9
-
73
-
-
84880227311
-
Templated chemically deposited semiconductor optical fiber materials
-
J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43, 527–557 (2013).
-
(2013)
Annu. Rev. Mater. Res.
, vol.43
, pp. 527-557
-
-
Sparks, J.R.1
Sazio, P.J.2
Gopalan, V.3
Badding, J.V.4
-
74
-
-
33645075162
-
Microstructured optical fibers as high-pressure microfluidic reactors
-
P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
-
(2006)
Science
, vol.311
, pp. 1583-1586
-
-
Sazio, P.J.1
Amezcua-Correa, A.2
Finlayson, C.E.3
Hayes, J.R.4
Scheidemantel, T.J.5
Baril, N.F.6
Jackson, B.R.7
Won, D.-J.8
Zhang, F.9
Margine, E.R.10
-
75
-
-
84982750200
-
-
retrieved April 1, 2015
-
www.rmico.com, retrieved April 1, 2015.
-
-
-
-
76
-
-
77955214401
-
Silicon optical modulators
-
G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
-
(2010)
Nat. Photonics
, vol.4
, pp. 518-526
-
-
Reed, G.T.1
Mashanovich, G.2
Gardes, F.3
Thomson, D.4
-
77
-
-
77955178826
-
Nonlinear silicon photonics
-
J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
-
(2010)
Nat. Photonics
, vol.4
, pp. 535-544
-
-
Leuthold, J.1
Koos, C.2
Freude, W.3
-
78
-
-
33646421955
-
Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers
-
V. Raghunathan, R. Shori, O. M. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” Phys. Status Solidi A 203, R38–R40 (2006).
-
(2006)
Phys. Status Solidi A
, vol.203
, pp. R38-R40
-
-
Raghunathan, V.1
Shori, R.2
Stafsudd, O.M.3
Jalali, B.4
-
79
-
-
66449121611
-
Glass-clad single-crystal germanium optical fiber
-
J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 8029-8035
-
-
Ballato, J.1
Hawkins, T.2
Foy, P.3
Yazgan-Kokuoz, B.4
Stolen, R.5
McMillen, C.6
Hon, N.7
Jalali, B.8
Rice, R.9
-
80
-
-
78649703423
-
Advancements in semiconductor core optical fiber
-
J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16, 399–408 (2010).
-
(2010)
Opt. Fiber Technol.
, vol.16
, pp. 399-408
-
-
Ballato, J.1
Hawkins, T.2
Foy, P.3
Yazgan-Kokuoz, B.4
McMillen, C.5
Burka, L.6
Morris, S.7
Stolen, R.8
Rice, R.9
-
81
-
-
84982767738
-
Reactive in-situ processing of silicon optical fiber
-
Optical Society of America, paper STu3F.4
-
S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, J. Ballato, and R. Rice, “Reactive in-situ processing of silicon optical fiber,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper STu3F.4.
-
(2012)
Advanced Photonics Congress, OSA Technical Digest (Online)
-
-
Morris, S.1
Hawkins, T.2
Foy, P.3
McMillen, C.4
Fan, J.5
Zhu, L.6
Stolen, R.7
Ballato, J.8
Rice, R.9
-
82
-
-
0000710089
-
Optical transitions in ultrahigh- purity zinc selenide
-
K. Shahzad, D. J. Olego, and D. A. Cammack, “Optical transitions in ultrahigh- purity zinc selenide,” Phys. Rev. B 39, 13016 (1989).
-
(1989)
Phys. Rev. B
, vol.39
, pp. 13016
-
-
Shahzad, K.1
Olego, D.J.2
Cammack, D.A.3
-
83
-
-
11544311593
-
Blue-green laser diodes
-
M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes,” Appl. Phys. Lett. 59, 1272–1274 (1991).
-
(1991)
Appl. Phys. Lett.
, vol.59
, pp. 1272-1274
-
-
Haase, M.A.1
Qiu, J.2
Depuydt, J.M.3
Cheng, H.4
-
84
-
-
0026413179
-
Blue (ZnSe) and green (ZnSe0.9Te0.1) light emitting diodes
-
0.1) light emitting diodes,” J. Cryst. Growth 111, 829–832 (1991).
-
(1991)
J. Cryst. Growth
, vol.111
, pp. 829-832
-
-
Ren, J.1
Bowers, K.A.2
Sneed, B.3
Reed, F.E.4
Cook, J.W.5
Schetzina, J.F.6
-
85
-
-
84982681879
-
-
retrieved April 1, 2015
-
http://www.kayelaby.npl.co.uk/general_physics/2_5/2_5_8.html, retrieved April 1, 2015.
-
-
-
-
86
-
-
3543019718
-
Polycrystalline zinc selenide for IR optical applications
-
E. Gavrushchuk, “Polycrystalline zinc selenide for IR optical applications,” Inorg. Mater. 39, 883–899 (2003).
-
(2003)
Inorg. Mater.
, vol.39
, pp. 883-899
-
-
Gavrushchuk, E.1
-
87
-
-
33645228534
-
2+ in ZnSe optically pumped over Cr ionization transitions
-
C. Denman and I. Sorokina, eds, Optical Society of America, paper 241
-
2+ in ZnSe optically pumped over Cr ionization transitions,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 241.
-
(2005)
Advanced Solid-State Photonics (TOPS)
, vol.98
-
-
Gallian, A.1
Fedorov, V.V.2
Kernal, J.3
Mirov, S.B.4
Badikov, V.V.5
-
88
-
-
79953186639
-
Fiber draw synthesis
-
N. D. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. USA 108, 4743–4747 (2011).
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 4743-4747
-
-
Orf, N.D.1
Shapira, O.2
Sorin, F.3
Danto, S.4
Baldo, M.A.5
Joannopoulos, J.D.6
Fink, Y.7
-
89
-
-
84874959044
-
Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing
-
C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13, 975–979 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 975-979
-
-
Hou, C.1
Jia, X.2
Wei, L.3
Stolyarov, A.M.4
Shapira, O.5
Joannopoulos, J.D.6
Fink, Y.7
-
90
-
-
35348990856
-
Roughness-induced radiation losses in optical micro or nanofibers
-
G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15, 13805–13816 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 13805-13816
-
-
Zhai, G.1
Tong, L.2
-
91
-
-
30144442064
-
Loss in solid-core photonic crystal fibers due to interface roughness scattering
-
P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 7779-7793
-
-
Roberts, P.1
Couny, F.2
Sabert, H.3
Mangan, B.4
Birks, T.5
Knight, J.6
Russell, P.7
-
92
-
-
84891792015
-
Predicting the drawing conditions for microstructured optical fiber fabrication
-
R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4, 29–40 (2014).
-
(2014)
Opt. Mater. Express
, vol.4
, pp. 29-40
-
-
Kostecki, R.1
Ebendorff-Heidepriem, H.2
Warren-Smith, S.C.3
Monro, T.M.4
-
93
-
-
0000303337
-
A two-dimensional analysis of the viscous problem of a glass preform during the optical fibre drawing process
-
S. Rosenberg, H. Papamichael, and I. Miaoulis, “A two-dimensional analysis of the viscous problem of a glass preform during the optical fibre drawing process,” Glass Technol. 35, 260–264 (1994).
-
(1994)
Glass Technol
, vol.35
, pp. 260-264
-
-
Rosenberg, S.1
Papamichael, H.2
Miaoulis, I.3
-
94
-
-
0036699326
-
The mathematical modelling of capillary drawing for holey fibre manufacture
-
A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
-
(2002)
J. Eng. Math.
, vol.43
, pp. 201-227
-
-
Fitt, A.1
Furusawa, K.2
Monro, T.3
Please, C.4
Richardson, D.5
-
95
-
-
85008055334
-
Optical fiber drawing process model using an analytical neck-down profile
-
A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. Technol. Lett. 2, 620–629 (2010).
-
(2010)
IEEE Photon. Technol. Lett.
, vol.2
, pp. 620-629
-
-
Mawardi, A.1
Pitchumani, R.2
-
96
-
-
77953825120
-
Influence of surface tension and inner pressure on the process of fibre drawing
-
G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol. 28, 1882–1888 (2010).
-
(2010)
J. Lightwave Technol.
, vol.28
, pp. 1882-1888
-
-
Luzi, G.1
Epple, P.2
Scharrer, M.3
Fujimoto, K.4
Rauh, C.5
Delgado, A.6
-
97
-
-
0031103721
-
Simulation of the transport processes in the neckdown region of a furnace drawn optical fiber
-
S. Lee and Y. Jaluria, “Simulation of the transport processes in the neckdown region of a furnace drawn optical fiber,” Int. J. Heat Mass Transfer 40, 843–856 (1997).
-
(1997)
Int. J. Heat Mass Transfer
, vol.40
, pp. 843-856
-
-
Lee, S.1
Jaluria, Y.2
-
98
-
-
0018006017
-
Physical behavior of the neck-down region during furnace drawing of silica fibers
-
U. Paek and R. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys. 49, 4417–4422 (1978).
-
(1978)
J. Appl. Phys.
, vol.49
, pp. 4417-4422
-
-
Paek, U.1
Runk, R.2
-
99
-
-
33847689312
-
Newtonian and non-Newtonian models of the hollow all-polymer Bragg fiber drawing
-
E. Pone, C. Dubois, N. Guo, S. Lacroix, and M. Skorobogatiy, “Newtonian and non-Newtonian models of the hollow all-polymer Bragg fiber drawing,” J. Lightwave Technol. 24, 4991–4999 (2006).
-
(2006)
J. Lightwave Technol.
, vol.24
, pp. 4991-4999
-
-
Pone, E.1
Dubois, C.2
Guo, N.3
Lacroix, S.4
Skorobogatiy, M.5
-
100
-
-
37849187515
-
A fabrication process for microstructured optical fibers
-
R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol. 24, 4304–4313 (2006).
-
(2006)
J. Lightwave Technol.
, vol.24
, pp. 4304-4313
-
-
Wynne, R.M.1
-
101
-
-
78651297982
-
Manufacturing conditions for microstructured and nanostructured optical fibers
-
R. M. Wynne, “Manufacturing conditions for microstructured and nanostructured optical fibers,” J. Lightwave Technol. 29, 104–108 (2011).
-
(2011)
J. Lightwave Technol.
, vol.29
, pp. 104-108
-
-
Wynne, R.M.1
-
102
-
-
84982682673
-
-
retrieved April 1, 2015
-
http://www.matweb.com/, retrieved April 1, 2015.
-
-
-
-
103
-
-
84982685685
-
-
retrieved April 1, 2015
-
http://www.goodfellowusa.com/A/Polyethersulfone‑Polymer.html, retrieved April 1, 2015.
-
-
-
-
104
-
-
84982708879
-
-
retrieved April 1, 2015
-
http://www.plasticoptics.com/optical‑plastic‑materials.html, retrieved April 1, 2015.
-
-
-
-
105
-
-
84982751362
-
-
retrieved April 1, 2015
-
http://en.wikipedia.org/wiki/Poly(methyl_methacrylate), retrieved April 1, 2015.
-
-
-
-
106
-
-
84982756589
-
-
retrieved April 1, 2015
-
http://www.makeitfrom.com/compare/Polymethylmethacrylate‑PMMAAcrylic/Soda‑Lime‑Float‑Glass/, retrieved April 1, 2015.
-
-
-
-
107
-
-
84982721079
-
-
retrieved April 1, 2015
-
http://hyperphysics.phy‑astr.gsu.edu/hbase/tables/thrcn.html, retrieved April 1, 2015.
-
-
-
-
108
-
-
84982682618
-
-
retrieved April 1, 2015
-
http://www.schott.com/advanced_optics/us/abbe_datasheets/schott_ datasheet_all_us.pdf, retrieved April 1, 2015.
-
-
-
-
109
-
-
79958009320
-
Bend sensors based on periodically tapered soft glass fibers
-
Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Bend sensors based on periodically tapered soft glass fibers,” Proc. SPIE 7753, 77534J (2011).
-
(2011)
Proc. SPIE
, vol.7753
-
-
Wang, Y.1
Richardson, D.2
Brambilla, G.3
Feng, X.4
Petrovich, M.5
Ding, M.6
Song, Z.7
-
110
-
-
84875790007
-
Fabrication of extruded fluoroindate optical fibers
-
J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3, 318–328 (2013).
-
(2013)
Opt. Mater. Express
, vol.3
, pp. 318-328
-
-
Bei, J.1
Monro, T.M.2
Hemming, A.3
Ebendorff-Heidepriem, H.4
-
111
-
-
84884195137
-
Lead-germanate glasses and fibers: A practical alternative to tellurite for nonlinear fiber applications
-
H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar, V. T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications,” Opt. Mater. Express 3, 1488–1503 (2013).
-
(2013)
Opt. Mater. Express
, vol.3
, pp. 1488-1503
-
-
Munasinghe, H.T.1
Winterstein-Beckmann, A.2
Schiele, C.3
Manzani, D.4
Wondraczek, L.5
Afshar, S.6
Monro, V.T.M.7
Ebendorff-Heidepriem, H.8
-
112
-
-
84864187611
-
Structured spheres generated by an in-fibre fluid instability
-
J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
-
(2012)
Nature
, vol.487
, pp. 463-467
-
-
Kaufman, J.J.1
Tao, G.2
Shabahang, S.3
Banaei, E.-H.4
Deng, D.S.5
Liang, X.6
Johnson, S.G.7
Fink, Y.8
Abouraddy, A.F.9
-
113
-
-
84884633371
-
In-fiber production of polymeric particles for biosensing and encapsulation
-
J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 15549-15554
-
-
Kaufman, J.J.1
Ottman, R.2
Tao, G.3
Shabahang, S.4
Banaei, E.-H.5
Liang, X.6
Johnson, S.G.7
Fink, Y.8
Chakrabarti, R.9
Abouraddy, A.F.10
-
114
-
-
80155154240
-
Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers
-
S. Shabahang, J. Kaufman, D. Deng, and A. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
-
(2011)
Appl. Phys. Lett.
, vol.99
-
-
Shabahang, S.1
Kaufman, J.2
Deng, D.3
Abouraddy, A.4
-
115
-
-
61649096367
-
In-fiber semiconductor filament arrays
-
D. Deng, N. Orf, A. Abouraddy, A. Stolyarov, J. Joannopoulos, H. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8, 4265–4269 (2008).
-
(2008)
Nano Lett
, vol.8
, pp. 4265-4269
-
-
Deng, D.1
Orf, N.2
Abouraddy, A.3
Stolyarov, A.4
Joannopoulos, J.5
Stone, H.6
Fink, Y.7
-
116
-
-
74549143672
-
Processing and properties of centimeter-long, in-fiber, crystallineselenium filaments
-
D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystallineselenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
-
(2010)
Appl. Phys. Lett.
, vol.96
-
-
Deng, D.1
Orf, N.2
Danto, S.3
Abouraddy, A.4
Joannopoulos, J.5
Fink, Y.6
-
117
-
-
0022152111
-
Fabrication of long single-mode and multimode fluoride glass fibres by the double-crucible technique
-
H. Tokiwa, Y. Mimura, T. Nakai, and O. Shinbori, “Fabrication of long single-mode and multimode fluoride glass fibres by the double-crucible technique,” Electron. Lett. 21, 1131–1132 (1985).
-
(1985)
Electron. Lett.
, vol.21
, pp. 1131-1132
-
-
Tokiwa, H.1
Mimura, Y.2
Nakai, T.3
Shinbori, O.4
-
118
-
-
84943730794
-
Characteristics of KRS-5 fiber with crystalline cladding
-
M. Kimura, S. Kachi, and K. Shiroyama, “Characteristics of KRS-5 fiber with crystalline cladding,” Proc. SPIE 618, 85–88 (1986).
-
(1986)
Proc. SPIE
, vol.618
, pp. 85-88
-
-
Kimura, M.1
Kachi, S.2
Shiroyama, K.3
-
119
-
-
0000271370
-
Infrared alkali halide fibers
-
J. A. Harrington, “Infrared alkali halide fibers,” Appl. Opt. 27, 3097–3101 (1988).
-
(1988)
Appl. Opt.
, vol.27
, pp. 3097-3101
-
-
Harrington, J.A.1
-
120
-
-
79957528649
-
Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics
-
M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
-
(2011)
J. Non-Cryst. Solids
, vol.357
, pp. 2352-2357
-
-
Churbanov, M.1
Snopatin, G.2
Shiryaev, V.3
Plotnichenko, V.4
Dianov, E.5
-
121
-
-
84885356934
-
3 preform purity and glass optical fiber mechanical strength
-
3 preform purity and glass optical fiber mechanical strength,” Mater. Res. Bull. 49, 250–258 (2014).
-
(2014)
Mater. Res. Bull.
, vol.49
, pp. 250-258
-
-
Danto, S.1
Dubernet, M.2
Giroire, B.3
Musgraves, J.D.4
Wachtel, P.5
Hawkins, T.6
Ballato, J.7
Richardson, K.8
-
122
-
-
84903637333
-
Robust multimaterial telluriumbased chalcogenide glass fibers for mid-wave and long-wave infrared transmission
-
G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial telluriumbased chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39, 4009–4012 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 4009-4012
-
-
Tao, G.1
Shabahang, S.2
Ren, H.3
Khalilzadeh-Rezaie, F.4
Peale, R.E.5
Yang, Z.6
Wang, X.7
Abouraddy, A.F.8
-
123
-
-
84907458462
-
Multimaterial discto- fiber approach to efficiently produce robust infrared fibers
-
G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial discto- fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4, 2143–2149 (2014).
-
(2014)
Opt. Mater. Express
, vol.4
, pp. 2143-2149
-
-
Tao, G.1
Shabahang, S.2
Dai, S.3
Abouraddy, A.F.4
-
125
-
-
0033365235
-
Towards monomode proportioned fibreoptic preforms by extrusion
-
D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
-
(1999)
J. Non-Cryst. Solids
, vol.256
, pp. 232-236
-
-
Furniss, D.1
Seddon, A.B.2
-
126
-
-
0021510052
-
Fabrication of fluoride glass single-mode fibers
-
Y. Ohishi, S. Mitachi, and S. Takahashi, “Fabrication of fluoride glass single-mode fibers,” J. Lightwave Technol. 2, 593–596 (1984).
-
(1984)
J. Lightwave Technol.
, vol.2
, pp. 593-596
-
-
Ohishi, Y.1
Mitachi, S.2
Takahashi, S.3
-
127
-
-
80052024161
-
Suspended core tellurite glass optical fibers for infrared supercontinuum generation
-
I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).
-
(2011)
Opt. Mater.
, vol.33
, pp. 1661-1666
-
-
Savelii, I.1
Jules, J.2
Gadret, G.3
Kibler, B.4
Fatome, J.5
El-Amraoui, M.6
Manikandan, N.7
Zheng, X.8
Désévédavy, F.9
Dudley, J.10
-
128
-
-
4644305513
-
Fabrication of microstructured polymer optical fibres
-
G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
-
(2004)
Opt. Fiber Technol.
, vol.10
, pp. 325-335
-
-
Barton, G.1
Van Eijkelenborg, M.A.2
Henry, G.3
Large, M.C.4
Zagari, J.5
-
129
-
-
77957904366
-
Extruded tellurite glass optical fiber preforms
-
A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210, 2016–2022 (2010).
-
(2010)
J. Mater. Process. Technol.
, vol.210
, pp. 2016-2022
-
-
Belwalkar, A.1
Xiao, H.2
Misiolek, W.Z.3
Toulouse, J.4
-
130
-
-
0020152766
-
Fluoride glass preforms prepared by a rotational casting process
-
D. C. Tran, C. F. Fisher, and G. H. Sigel, “Fluoride glass preforms prepared by a rotational casting process,” Electron. Lett. 18, 657–658 (1982).
-
(1982)
Electron. Lett.
, vol.18
, pp. 657-658
-
-
Tran, D.C.1
Fisher, C.F.2
Sigel, G.H.3
-
131
-
-
75849155767
-
Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting
-
J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).
-
(2010)
Opt. Mater.
, vol.32
, pp. 582-588
-
-
Massera, J.1
Haldeman, A.2
Milanese, D.3
Gebavi, H.4
Ferraris, M.5
Foy, P.6
Hawkins, W.7
Ballato, J.8
Stolen, R.9
Petit, L.10
-
132
-
-
0001378166
-
Extrusion of glass
-
E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5, 377–388 (1971).
-
(1971)
J. Non-Cryst. Solids
, vol.5
, pp. 377-388
-
-
Roeder, E.1
-
133
-
-
0038725038
-
Flow behaviour of glass during extrusion
-
E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7, 203–220 (1972).
-
(1972)
J. Non-Cryst. Solids
, vol.7
, pp. 203-220
-
-
Roeder, E.1
-
134
-
-
84982669236
-
New mid-infrared extruded single and multi component metal halides crystalline fibers
-
Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD)Optical Society of America, paper ITh1B.4
-
L. Butvina, A. Butvina, E. Dianov, N. Lichkova, and V. Zagorodnev, “New mid-infrared extruded single and multi component metal halides crystalline fibers,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper ITh1B.4.
-
(2012)
-
-
Butvina, L.1
Butvina, A.2
Dianov, E.3
Lichkova, N.4
Zagorodnev, V.5
-
135
-
-
78650063459
-
Microstructured chalcogenide optical fibers from As2S3 glass: Towards new IR broadband sources
-
M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 26655-26665
-
-
El-Amraoui, M.1
Gadret, G.2
Jules, J.C.3
Fatome, J.4
Fortier, C.5
Désévédavy, F.6
Skripatchev, I.7
Messaddeq, Y.8
Troles, J.9
Brilland, L.10
Gao, W.11
Suzuki, T.12
Ohishi, Y.13
Smektala, F.14
-
136
-
-
36248958789
-
Extrusion of complex preforms for microstructured optical fibers
-
H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 15086-15092
-
-
Ebendorff-Heidepriem, H.1
Monro, T.M.2
-
137
-
-
84982756552
-
Efficient disc-tofiber multimaterial stacked coextrusion for robust infrared optical fibers
-
I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online)Optical Society of America, paper FTu4B.3
-
G. Tao, S. Shabahang, X. Wang, and A. F. Abouraddy, “Efficient disc-tofiber multimaterial stacked coextrusion for robust infrared optical fibers,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4B.3.
-
(2013)
Frontiers in Optics 2013
-
-
Tao, G.1
Shabahang, S.2
Wang, X.3
Abouraddy, A.F.4
-
138
-
-
0032153914
-
Extrusion of gallium lanthanum sulfide glasses for fiber-optic preforms
-
D. Furniss and A. B. Seddon, “Extrusion of gallium lanthanum sulfide glasses for fiber-optic preforms,” J. Mater. Sci. Lett. 17, 1541–1542 (1998).
-
(1998)
J. Mater. Sci. Lett.
, vol.17
, pp. 1541-1542
-
-
Furniss, D.1
Seddon, A.B.2
-
139
-
-
0028274346
-
Low-loss fluorozirco-aluminate glass fiber
-
K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167, 112–116 (1994).
-
(1994)
J. Non-Cryst. Solids
, vol.167
, pp. 112-116
-
-
Itoh, K.1
Miura, K.2
Masuda, I.3
Iwakura, M.4
Yamashita, T.5
-
140
-
-
84930662968
-
Fabrication of an IR hollow-core Bragg fiber based on chalcogenide glass extrusion
-
(to be published)
-
M. Zhu, X. Wang, Z. Pan, C. Cheng, Q. Zhu, C. Jiang, Q. Nie, P. Zhang, Y. Wu, and S. Dai, “Fabrication of an IR hollow-core Bragg fiber based on chalcogenide glass extrusion,” Appl. Phys. A, doi: 10.1007/s00339-015-9017-3 (to be published).
-
Appl. Phys. A
-
-
Zhu, M.1
Wang, X.2
Pan, Z.3
Cheng, C.4
Zhu, Q.5
Jiang, C.6
Nie, Q.7
Zhang, P.8
Wu, Y.9
Dai, S.10
-
141
-
-
2342616703
-
Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure
-
D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95, 3895–3900 (2004).
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 3895-3900
-
-
Gibson, D.J.1
Harrington, J.A.2
-
142
-
-
24344489868
-
Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices
-
X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87, 081110 (2005).
-
(2005)
Appl. Phys. Lett.
, vol.87
-
-
Feng, X.1
Monro, T.M.2
Petropoulos, P.3
Finazzi, V.4
Richardson, D.J.5
-
143
-
-
0033657480
-
Gallium lanthanum sulphide fibers for infrared transmission
-
Y. West, T. Schweizer, D. Brady, and D. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,”. 19, 229–250 (2000).
-
(2000)
, vol.19
, pp. 229-250
-
-
West, Y.1
Schweizer, T.2
Brady, D.3
Hewak, D.4
-
144
-
-
44349193362
-
Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers
-
S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
-
(2008)
J. Non-Cryst. Solids
, vol.354
, pp. 3418-3427
-
-
Savage, S.D.1
Miller, C.A.2
Furniss, D.3
Seddon, A.B.4
-
145
-
-
0242334274
-
Chalcogenide double index fibers: Fabrication, design, and application as a chemical sensor
-
D. Le Coq, C. Boussard-Plédel, G. Fonteneau, T. Pain, B. Bureau, and J. Adam, “Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor,” Mater. Res. Bull. 38, 1745–1754 (2003).
-
(2003)
Mater. Res. Bull.
, vol.38
, pp. 1745-1754
-
-
Le Coq, D.1
Boussard-Plédel, C.2
Fonteneau, G.3
Pain, T.4
Bureau, B.5
Adam, J.6
-
146
-
-
70349212226
-
Experimental demonstration of spectral broadening in an all-silica Bragg fiber
-
H. T. Bookey, S. Dasgupta, N. Bezawada, B. P. Pal, A. Sysoliatin, J. E. McCarthy, M. Salganskii, V. Khopin, and A. K. Kar, “Experimental demonstration of spectral broadening in an all-silica Bragg fiber,” Opt. Express 17, 17130–17135 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 17130-17135
-
-
Bookey, H.T.1
Dasgupta, S.2
Bezawada, N.3
Pal, B.P.4
Sysoliatin, A.5
McCarthy, J.E.6
Salganskii, M.7
Khopin, V.8
Kar, A.K.9
-
147
-
-
22444442187
-
Nonsilica glasses for holey fibers
-
M. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046–2054 (2005).
-
(2005)
J. Lightwave Technol.
, vol.23
, pp. 2046-2054
-
-
Feng, M.1
Mairaj, A.K.2
Hewak, D.W.3
Monro, T.M.4
-
148
-
-
77952083395
-
Casting method for producing low-loss chalcogenide microstructured optical fibers
-
Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Mechin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Troles, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 9107-9112
-
-
Coulombier, Q.1
Brilland, L.2
Houizot, P.3
Chartier, T.4
N’Guyen, T.N.5
Smektala, F.6
Renversez, G.7
Monteville, A.8
Mechin, D.9
Pain, T.10
Orain, H.11
Sangleboeuf, J.-C.12
Troles, J.13
-
149
-
-
0042739203
-
Low-loss hollow-core silica/air photonic bandgap fibre
-
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
-
(2003)
Nature
, vol.424
, pp. 657-659
-
-
Smith, C.M.1
Venkataraman, N.2
Gallagher, M.T.3
Muller, D.4
West, J.A.5
Borrelli, N.F.6
Allan, D.C.7
Koch, K.W.8
-
150
-
-
0015585013
-
A new optical fiber
-
P. Kaiser, E. Marcatili, and S. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).
-
(1973)
Bell Syst. Tech. J.
, vol.52
, pp. 265-269
-
-
Kaiser, P.1
Marcatili, E.2
Miller, S.3
-
151
-
-
7544233777
-
All-solid photonic bandgap fiber
-
F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
-
(2004)
Opt. Lett.
, vol.29
, pp. 2369-2371
-
-
Luan, F.1
George, A.K.2
Hedley, T.D.3
Pearce, G.J.4
Bird, D.M.5
Knight, J.C.6
Russell, P.J.7
-
152
-
-
0037030534
-
Extruded singlemode non-silica glass holey optical fibres
-
K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
-
(2002)
Electron. Lett.
, vol.38
, pp. 546-547
-
-
Kiang, K.M.1
Frampton, K.2
Monro, T.M.3
Moore, R.4
Tucknott, J.5
Hewak, D.W.6
Richardson, D.J.7
Rutt, H.N.8
-
154
-
-
0033645212
-
Development and infrared applications of chalcogenide glass optical fibers
-
J. Sanghera, L. Shaw, L. Busse, V. Nguyen, P. Pureza, B. Cole, B. Harrison, I. Aggarwal, R. Mossadegh, and F. Kung, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
-
(2000)
Fiber Integr. Opt.
, vol.19
, pp. 251-274
-
-
Sanghera, J.1
Shaw, L.2
Busse, L.3
Nguyen, V.4
Pureza, P.5
Cole, B.6
Harrison, B.7
Aggarwal, I.8
Mossadegh, R.9
Kung, F.10
-
155
-
-
0033365920
-
Chalcogenide glass single mode fibres—preparation and properties
-
J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres—preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
-
(1999)
J. Non-Cryst. Solids
, vol.256-257
, pp. 226-231
-
-
Kobelke, J.1
Kirchhof, J.2
Scheffler, M.3
Schwuchow, A.4
-
156
-
-
0002540803
-
Development of low-loss IR transmitting chalcogenide glass fibers
-
J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
-
(1995)
Proc. SPIE
, vol.2396
, pp. 71-77
-
-
Sanghera, J.S.1
Aggarwal, I.D.2
Busse, L.E.3
Pureza, P.C.4
Nguyen, V.Q.5
Miklos, R.E.6
Kung, F.H.7
Mossadegh, R.8
-
157
-
-
0021513427
-
Chalcogenide glass-fibers for mid-infrared transmission
-
T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
-
(1984)
J. Lightwave Technol.
, vol.2
, pp. 607-613
-
-
Kanamori, T.1
Terunuma, Y.2
Takahashi, S.3
Miyashita, T.4
-
158
-
-
84883440784
-
Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km
-
A. Vasilyev, G. G. Devyatykh, E. M. Dianov, A. N. Gur’yanov, A. Y. Laptev, V. G. e. Plotnichenko, Y. N. Pyrkov, G. E. Snopatin, I. V. Skripachev, and M. F. Churbanov, “Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km,” Quantum Electron. 23, 89–90 (1993).
-
(1993)
Quantum Electron
, vol.23
, pp. 89-90
-
-
Vasilyev, A.1
Devyatykh, G.G.2
Dianov, E.M.3
Gur’yanov, A.N.4
Laptev, A.Y.5
Plotnichenko, V.G.E.6
Pyrkov, Y.N.7
Snopatin, G.E.8
Skripachev, I.V.9
Churbanov, M.F.10
-
159
-
-
0025675178
-
Research and development on silver halide fibers at Tel Aviv University
-
F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, and A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” Proc. SPIE 1228, 128–139 (1990).
-
(1990)
Proc. SPIE
, vol.1228
, pp. 128-139
-
-
Moser, F.1
Barkay, N.2
Levite, A.3
Margalit, E.4
Paiss, I.5
Sa’ar, A.6
Schnitzer, I.7
Zur, A.8
Katzir, A.9
-
160
-
-
0027605330
-
Optical and mechanical properties of single-crystal sapphire optical fibers
-
G. N. Merberg and J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
-
(1993)
Appl. Opt.
, vol.32
, pp. 3201-3209
-
-
Merberg, G.N.1
Harrington, J.A.2
-
162
-
-
0000038382
-
Tellurite glasses
-
J. E. Stanworth, “Tellurite glasses,” Nature 169, 581–582 (1952).
-
(1952)
Nature
, vol.169
, pp. 581-582
-
-
Stanworth, J.E.1
-
163
-
-
84867830519
-
Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications
-
A. Jha, B. D. O. Richards, G. Jose, T. T. Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57, 357–382 (2012).
-
(2012)
Int. Mater. Rev.
, vol.57
, pp. 357-382
-
-
Jha, A.1
Richards, B.D.O.2
Jose, G.3
Fernandez, T.T.4
Hill, C.J.5
Lousteau, J.6
Joshi, P.7
-
164
-
-
84881507865
-
Halo-tellurite glass fiber with low OH content for 2–5 μm mid-infrared nonlinear applications
-
X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2–5 μm mid-infrared nonlinear applications,” Opt. Express 21, 18949–18954 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 18949-18954
-
-
Feng, X.1
Shi, J.2
Segura, M.3
White, N.M.4
Kannan, P.5
Loh, W.H.6
Calvez, L.7
Zhang, X.8
Brilland, L.9
-
165
-
-
84861345185
-
3+-doped TeO2–ZnO–Nb2O5 based tellurite glasses with high emission cross-section
-
5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34, 1549–1552 (2012).
-
(2012)
Opt. Mater.
, vol.34
, pp. 1549-1552
-
-
Wang, C.1
Wang, P.2
Zheng, R.3
Xu, S.4
Wei, W.5
Peng, B.6
-
166
-
-
84857545133
-
3+ triplydoped tellurite core-cladding optical fiber for white light generation
-
3+ triplydoped tellurite core-cladding optical fiber for white light generation,” Opt. Mater. Express 1, 1515–1526 (2011).
-
(2011)
Opt. Mater. Express
, vol.1
, pp. 1515-1526
-
-
Manzani, D.1
Ledemi, Y.2
Skripachev, I.3
Messaddeq, Y.4
Ribeiro, S.J.L.5
De Oliveira, R.E.P.6
De Matos, C.J.S.7
-
168
-
-
77956449142
-
Glasses for photonic applications
-
K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1, 74–86 (2010).
-
(2010)
Int. J. Appl. Glass Sci.
, vol.1
, pp. 74-86
-
-
Richardson, K.1
Krol, D.2
Hirao, K.3
-
169
-
-
43849093313
-
Over 4000 nm bandwidth of mid-IR supercontinuum generation in subcentimeter segments of highly nonlinear tellurite PCFs
-
P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in subcentimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
-
(2008)
Opt. Express
, vol.16
, pp. 7161-7168
-
-
Domachuk, P.1
Wolchover, N.A.2
Cronin-Golomb, M.3
Wang, A.4
George, A.K.5
Cordeiro, C.M.B.6
Knight, J.C.7
Omenetto, F.G.8
-
170
-
-
69949111669
-
A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation
-
M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 15481-15490
-
-
Liao, M.1
Yan, X.2
Qin, G.3
Chaudhari, C.4
Suzuki, T.5
Ohishi, Y.6
-
171
-
-
84890050794
-
Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm
-
R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
-
(2013)
Proc. SPIE
, vol.8898
-
-
Thapa, R.1
Rhonehouse, D.2
Nguyen, D.3
Wiersma, K.4
Smith, C.5
Zong, J.6
Chavez-Pirson, A.7
-
172
-
-
84890107098
-
Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm
-
C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 29488-29504
-
-
Wei, C.1
Zhu, X.2
Norwood, R.A.3
Song, F.4
Peyghambarian, N.5
-
173
-
-
54249114554
-
Tellurite-based fibers and their applications to optical communication networks
-
A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116, 1040–1051 (2008).
-
(2008)
J. Ceram. Soc. Jpn.
, vol.116
, pp. 1040-1051
-
-
Mori, A.1
-
174
-
-
80052962990
-
3 glasses
-
3 glasses,” Opt. Mater. 33, 1858–1861 (2011).
-
(2011)
Opt. Mater.
, vol.33
, pp. 1858-1861
-
-
Moiseev, A.N.1
Dorofeev, V.V.2
Chilyasov, A.V.3
Kraev, I.A.4
Churbanov, M.F.5
Kotereva, T.V.6
Pimenov, V.G.7
Snopatin, G.E.8
Pushkin, A.A.9
Gerasimenko, V.V.10
Kosolapov, A.F.11
Plotnichenko, V.G.12
Dianov, E.M.13
-
175
-
-
84878315442
-
Management of OH absorption in tellurite optical fibers and related supercontinuum generation
-
I. Savelii, F. Desevedavy, J.-C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35, 1595–1599 (2013).
-
(2013)
Opt. Mater.
, vol.35
, pp. 1595-1599
-
-
Savelii, I.1
Desevedavy, F.2
Jules, J.-C.3
Gadret, G.4
Fatome, J.5
Kibler, B.6
Kawashima, H.7
Ohishi, Y.8
Smektala, F.9
-
176
-
-
84862147977
-
Extruded tellurite glass and fibers with low OH content for midinfrared applications
-
H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for midinfrared applications,” Opt. Mater. Express 2, 432–442 (2012).
-
(2012)
Opt. Mater. Express
, vol.2
, pp. 432-442
-
-
Ebendorff-Heidepriem, H.1
Kuan, K.2
Oermann, M.R.3
Knight, K.4
Monro, T.M.5
-
177
-
-
38549130430
-
3 glasses with the reduced content of OH-groups
-
3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).
-
(2007)
J. Optoelectron. Adv. Mater.
, vol.9
, pp. 3229-3234
-
-
Churbanov, M.1
Moiseev, A.2
Chilyasov, A.3
Dorofeev, V.4
Kraev, I.5
Lipatova, M.6
Kotereva, T.7
Dianov, E.8
Plotnichenko, V.9
Kryukova, E.10
-
178
-
-
0242303559
-
Fluorotellurite glasses with improved mid-infrared transmission
-
M. D. O’Donnell, C. A. Miller, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Fluorotellurite glasses with improved mid-infrared transmission,” J. Non-Cryst. Solids 331, 48–57 (2003).
-
(2003)
J. Non-Cryst. Solids
, vol.331
, pp. 48-57
-
-
O’Donnell, M.D.1
Miller, C.A.2
Furniss, D.3
Tikhomirov, V.K.4
Seddon, A.B.5
-
179
-
-
79957438311
-
Production and properties of high purity TeO2–WO3–(La2O3, Bi2 O3) and TeO2–ZnO–Na2O–Bi2O3 glasses
-
3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
-
(2011)
J. Non-Cryst. Solids
, vol.357
, pp. 2366-2370
-
-
Dorofeev, V.V.1
Moiseev, A.N.2
Churbanov, M.F.3
Kotereva, T.V.4
Chilyasov, A.V.5
Kraev, I.A.6
Pimenov, V.G.7
Ketkova, L.A.8
Dianov, E.M.9
Plotnichenko, V.G.10
Kosolapov, A.F.11
Koltashev, V.V.12
-
180
-
-
0035278490
-
Hydroxyl groups in erbium-doped germanotellurite glasses
-
X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281, 48–54 (2001).
-
(2001)
J. Non-Cryst. Solids
, vol.281
, pp. 48-54
-
-
Feng, X.1
Tanabe, S.2
Hanada, T.3
-
181
-
-
61449088370
-
Preparation and characterization of new fluorotellurite glasses for photonics application
-
G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonics application,” J. Non-Cryst. Solids 355, 447–452 (2009).
-
(2009)
J. Non-Cryst. Solids
, vol.355
, pp. 447-452
-
-
Liao, G.1
Chen, Q.2
Xing, J.3
Gebavi, H.4
Milanese, D.5
Fokine, M.6
Ferraris, M.7
-
182
-
-
70349201272
-
Solid-core tellurite glass fiber for infrared and nonlinear applications
-
A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17, 16716–16721 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 16716-16721
-
-
Lin, A.1
Zhang, A.2
Bushong, E.J.3
Toulouse, J.4
-
183
-
-
79952333526
-
Fabrication and characterization of a water-free mid-infrared fluorotellurite glass
-
A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett. 36, 740–742 (2011).
-
(2011)
Opt. Lett.
, vol.36
, pp. 740-742
-
-
Lin, A.1
Ryasnyanskiy, A.2
Toulouse, J.3
-
184
-
-
80052310122
-
Processing of tellurite-based glass with low OH content
-
J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94, 130–136 (2011).
-
(2011)
J. Am. Ceram. Soc.
, vol.94
, pp. 130-136
-
-
Massera, J.1
Haldeman, A.2
Jackson, J.3
Rivero-Baleine, C.4
Petit, L.5
Richardson, K.6
-
186
-
-
84858666712
-
Extruded microstructured fiber lasers
-
M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett. 24, 578–580 (2012).
-
(2012)
IEEE Photon. Technol. Lett.
, vol.24
, pp. 578-580
-
-
Oermann, M.R.1
Ebendorff-Heidepriem, H.2
Ottaway, D.J.3
Lancaster, D.G.4
Veitch, P.J.5
Monro, T.M.6
-
187
-
-
78649532096
-
The structural, thermal, and optical analyses of multicomponent germanium oxide glasses for engineering mid-infrared fiber chemical sensing
-
X. Jiang, J. Lousteau, and A. Jha, “The structural, thermal, and optical analyses of multicomponent germanium oxide glasses for engineering mid-infrared fiber chemical sensing,” J. Am. Ceram. Soc. 93, 3259–3266 (2010).
-
(2010)
J. Am. Ceram. Soc.
, vol.93
, pp. 3259-3266
-
-
Jiang, X.1
Lousteau, J.2
Jha, A.3
-
188
-
-
84862154559
-
Ternary tellurite glasses for the fabrication of nonlinear optical fibres
-
S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Ternary tellurite glasses for the fabrication of nonlinear optical fibres,” Opt. Mater. Express 2, 140–152 (2012).
-
(2012)
Opt. Mater. Express
, vol.2
, pp. 140-152
-
-
Manning, S.1
Ebendorff-Heidepriem, H.2
Monro, T.M.3
-
189
-
-
79251505265
-
Watt-level ∼2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber
-
K. Li, G. Zhang, and L. Hu, “Watt-level ∼2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35, 4136–4138 (2010).
-
(2010)
Opt. Lett.
, vol.35
, pp. 4136-4138
-
-
Li, K.1
Zhang, G.2
Hu, L.3
-
190
-
-
77952796024
-
Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses
-
L. Ke-Feng, W. Guo-Nian, H. Li-Li, Z. Jun-Jie, and H. Jun-Jiang, “Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses,” J. Inorg. Mater. 25, 429–434 (2010).
-
(2010)
J. Inorg. Mater.
, vol.25
, pp. 429-434
-
-
Ke-Feng, L.1
Guo-Nian, W.2
Li-Li, H.3
Jun-Jie, Z.4
Jun-Jiang, H.5
-
191
-
-
69349086649
-
Investigation on germanium oxide-based glasses for infrared optical fibre development
-
X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31, 1701–1706 (2009)
-
(2009)
Opt. Mater
, vol.31
, pp. 1701-1706
-
-
Jiang, X.1
Lousteau, J.2
Richards, B.3
Jha, A.4
-
193
-
-
34547192702
-
Germanate glass as a window for high energy laser systems
-
S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14, 11687–11693 (2006).
-
(2006)
Opt. Express
, vol.14
, pp. 11687-11693
-
-
Bayya, S.S.1
Chin, G.D.2
Sanghera, J.S.3
Aggarwal, I.D.4
-
194
-
-
84855974407
-
Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length
-
M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).
-
(2012)
Opt. Express
, vol.20
, pp. 1141-1150
-
-
Liao, M.1
Gao, W.2
Duan, Z.3
Yan, X.4
Suzuki, T.5
Ohishi, Y.6
-
195
-
-
76149100288
-
Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers
-
G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35, 58–60 (2010).
-
(2010)
Opt. Lett.
, vol.35
, pp. 58-60
-
-
Qin, G.1
Liao, M.2
Chaudhari, C.3
Yan, X.4
Kito, C.5
Suzuki, T.6
Ohishi, Y.7
-
196
-
-
84865705783
-
3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser
-
3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).
-
(2010)
Opt. Mater.
, vol.32
, pp. 1007-1010
-
-
Fusari, F.1
Vetter, S.2
Lagatsky, A.3
Richards, B.4
Calvez, S.5
Jha, A.6
Dawson, M.7
Sibbett, W.8
Brown, C.9
-
197
-
-
78049495455
-
3+ doped 2 μm glass lasers
-
3+ doped 2 μm glass lasers,” Opt. Express 18, 22090–22098 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 22090-22098
-
-
Fusari, F.1
Lagatsky, A.A.2
Jose, G.3
Calvez, S.4
Jha, A.5
Dawson, M.D.6
Gupta, J.A.7
Sibbett, W.8
Brown, C.T.A.9
-
198
-
-
76749125993
-
Tellurite glass lasers operating close to 2 μm
-
B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7, 177 (2010).
-
(2010)
Laser Phys. Lett.
, vol.7
-
-
Richards, B.1
Jha, A.2
Tsang, Y.3
Binks, D.4
Lousteau, J.5
Fusari, F.6
Lagatsky, A.7
Brown, C.8
Sibbett, W.9
-
199
-
-
84861112824
-
3+ co-doped tungsten tellurite glass single mode fiber laser
-
3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20, 10115–10121 (2012).
-
(2012)
Opt. Express
, vol.20
, pp. 10115-10121
-
-
Li, K.1
Zhang, G.2
Wang, X.3
Hu, L.4
Kuan, P.5
Chen, D.6
Wang, M.7
-
200
-
-
33847669847
-
Highly efficient high-power thuliumdoped germanate glass fiber laser
-
J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thuliumdoped germanate glass fiber laser,” Opt. Lett. 32, 638–640 (2007).
-
(2007)
Opt. Lett.
, vol.32
, pp. 638-640
-
-
Wu, J.1
Yao, Z.2
Zong, J.3
Jiang, S.4
-
201
-
-
0021510755
-
Heavy metal fluoride glasses and fibers: A review
-
D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
-
(1984)
J. Lightwave Technol.
, vol.2
, pp. 566-586
-
-
Tran, D.1
Sigel, G.2
Bendow, B.3
-
202
-
-
84884182663
-
Reduction of scattering loss in fluoroindate glass fibers
-
J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3, 1285–1301 (2013).
-
(2013)
Opt. Mater. Express
, vol.3
, pp. 1285-1301
-
-
Bei, J.1
Monro, T.M.2
Hemming, A.3
Ebendorff-Heidepriem, H.4
-
203
-
-
0035144364
-
Fluoride glass research in France: Fundamentals and applications
-
J.-L. Adam, “Fluoride glass research in France: fundamentals and applications,” J. Fluorine Chem. 107, 265–270 (2001).
-
(2001)
J. Fluorine Chem.
, vol.107
, pp. 265-270
-
-
Adam, J.-L.1
-
205
-
-
0019623475
-
Prediction of loss minima in infra-red optical fibres
-
S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibres,” Electron. Lett. 17, 775–777 (1981).
-
(1981)
Electron. Lett.
, vol.17
, pp. 775-777
-
-
Shibata, S.1
Horiguchi, M.2
Jinguji, K.3
Mitachi, S.4
Kanamori, T.5
Manabe, T.6
-
206
-
-
0022739382
-
Preparation of elevated NA fluoride optical fibers
-
T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys. 25, L468 (1986).
-
(1986)
Jpn. J. Appl. Phys.
, vol.25
-
-
Kanamori, T.1
Sakaguchi, S.2
-
207
-
-
0027107118
-
Prospects for ultra-low-loss fluoride fibres at BTRL
-
S. F. Carter, J. R. Williams, M. W. Moore, D. Szebesta, and S. T. Davey, “Prospects for ultra-low-loss fluoride fibres at BTRL,” J. Non-Cryst. Solids 140, 153–158 (1992).
-
(1992)
J. Non-Cryst. Solids
, vol.140
, pp. 153-158
-
-
Carter, S.F.1
Williams, J.R.2
Moore, M.W.3
Szebesta, D.4
Davey, S.T.5
-
208
-
-
80052989970
-
Preparation and characterization of high-purity metal fluorides for photonic applications
-
W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94, 2896–2901 (2011).
-
(2011)
J. Am. Ceram. Soc.
, vol.94
, pp. 2896-2901
-
-
Patterson, W.M.1
Stark, P.C.2
Yoshida, T.M.3
Sheik-Bahae, M.4
Hehlen, M.P.5
-
209
-
-
17644443671
-
Spectral attenuation of fluoride glass fibers
-
G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids 213–214, 189–192 (1997).
-
(1997)
J. Non-Cryst. Solids
, vol.213-214
, pp. 189-192
-
-
West, G.F.1
Höfle, W.2
-
210
-
-
57649201964
-
Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission
-
H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33, 2861–2863 (2008).
-
(2008)
Opt. Lett.
, vol.33
, pp. 2861-2863
-
-
Ebendorff-Heidepriem, H.1
Foo, T.-C.2
Moore, R.C.3
Zhang, W.4
Li, Y.5
Monro, T.M.6
Hemming, A.7
Lancaster, D.G.8
-
211
-
-
84982714531
-
Recent advances in soft-glass photonic crystal fibres
-
Workshop on Specialty Optical Fibers and their ApplicationsOptical Society of America, paper W2.4
-
X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.
-
(2013)
-
-
Jiang, X.1
Babic, F.2
Euser, T.G.3
Weiss, T.4
Abdolvand, A.5
Finger, M.6
Joly, N.7
Frosz, M.H.8
Russell, P.S.9
-
212
-
-
84886321705
-
Fiber lasers that bridge the shortwave to midwave regions of the infrared spectrum
-
S. D. Jackson and D. G. Lancaster, “Fiber lasers that bridge the shortwave to midwave regions of the infrared spectrum,” in Fiber Lasers (Wiley- VCH, 2012).
-
(2012)
Fiber Lasers (Wiley- VCH
-
-
Jackson, S.D.1
Lancaster, D.G.2
-
213
-
-
77951497563
-
High-power ZBLAN glass fiber lasers: Review and prospect
-
X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1 (2010).
-
(2010)
Adv. Optoelectron.
, vol.2010
-
-
Zhu, X.1
Peyghambarian, N.2
-
214
-
-
84897409600
-
Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping
-
O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 493-496
-
-
Henderson-Sapir, O.1
Munch, J.2
Ottaway, D.J.3
-
215
-
-
84875991382
-
Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system
-
J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 7851-7857
-
-
Swiderski, J.1
Michalska, M.2
Maze, G.3
-
216
-
-
84861128330
-
Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation
-
C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
-
(2012)
J. Opt. Soc. Am. B
, vol.29
, pp. 635-645
-
-
Agger, C.1
Petersen, C.2
Dupont, S.3
Steffensen, H.4
Lyngsø, J.K.5
Thomsen, C.L.6
Thøgersen, J.7
Keiding, S.R.8
Bang, O.9
-
217
-
-
70350426213
-
Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber
-
G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.95
-
-
Qin, G.1
Yan, X.2
Kito, C.3
Liao, M.4
Chaudhari, C.5
Suzuki, T.6
Ohishi, Y.7
-
218
-
-
33750511941
-
Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping
-
C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
-
(2006)
Opt. Lett.
, vol.31
, pp. 2553-2555
-
-
Xia, C.1
Kumar, M.2
Kulkarni, O.P.3
Islam, M.N.4
Terry, J.F.L.5
Freeman, M.J.6
Poulain, M.7
Mazé, G.8
-
219
-
-
84897453248
-
High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the midinfrared
-
J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the midinfrared,” Opt. Lett. 39, 910–913 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 910-913
-
-
Swiderski, J.1
Michalska, M.2
-
220
-
-
84898005996
-
Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system
-
W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 1849-1852
-
-
Yang, W.1
Zhang, B.2
Xue, G.3
Yin, K.4
Hou, J.5
-
221
-
-
84900442618
-
A novel 2-μm pulsed fiber laser based on a supercontinuum source and its application to mid-infrared supercontinuum generation
-
W.-Q. Yang, B. Zhang, J. Hou, K. Yin, and Z.-J. Liu, “A novel 2-μm pulsed fiber laser based on a supercontinuum source and its application to mid-infrared supercontinuum generation,” Chin. Phys. B. 23, 054208 (2014).
-
(2014)
Chin. Phys. B.
, vol.23
-
-
Yang, W.-Q.1
Zhang, B.2
Hou, J.3
Yin, K.4
Liu, Z.-J.5
-
222
-
-
84894879692
-
Thulium pumped mid-infrared 0.9–9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers
-
I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
-
(2014)
Opt. Express
, vol.22
, pp. 3959-3967
-
-
Kubat, I.1
Rosenberg Petersen, C.2
Møller, U.V.3
Seddon, A.4
Benson, T.5
Brilland, L.6
Méchin, D.7
Moselund, P.M.8
Bang, O.9
-
223
-
-
0039768679
-
Fluoroindate glasses
-
P. P. Fedorov, R. M. Zakalyukin, L. N. Ignat’eva, and V. M. Bouznik, “Fluoroindate glasses,” Russ. Chem. Rev. 69, 705–716 (2000).
-
(2000)
Russ. Chem. Rev.
, vol.69
, pp. 705-716
-
-
Fedorov, P.P.1
Zakalyukin, R.M.2
Ignat’eva, L.N.3
Bouznik, V.M.4
-
224
-
-
84887929542
-
Mid-infrared supercontinuum generation in fluoroindate fiber
-
F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
-
(2013)
Opt. Lett.
, vol.38
, pp. 4683-4685
-
-
Théberge, F.1
Daigle, J.-F.2
Vincent, D.3
Mathieu, P.4
Fortin, J.5
Schmidt, B.E.6
Thiré, N.7
Légaré, F.8
-
225
-
-
84982694551
-
-
retrieved April 1, 2015
-
http://www.chgsouthampton.com/, retrieved April 1, 2015.
-
-
-
-
226
-
-
34748904623
-
Infrared single mode chalcogenide glass fiber for space
-
P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529–12538 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 12529-12538
-
-
Houizot, P.1
Boussard-Plédel, C.2
Faber, A.J.3
Cheng, L.K.4
Bureau, B.5
Van Nijnatten, P.A.6
Gielesen, W.L.M.7
Pereira Do Carmo, J.8
Lucas, J.9
-
227
-
-
0035032577
-
Chalcogens based glasses for IR fiber chemical sensors
-
S. Hocdé, C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
-
(2001)
Solid State Sci
, vol.3
, pp. 279-284
-
-
Hocdé, S.1
Boussard-Plédel, C.2
Fonteneau, G.3
Lucas, J.4
-
228
-
-
0346606798
-
Applications of chalcogenide glass optical fibers at NRL
-
J. Sanghera, I. Aggarwal, L. Shaw, L. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).
-
(2001)
J. Optoelectron. Adv. Mater.
, vol.3
, pp. 627-640
-
-
Sanghera, J.1
Aggarwal, I.2
Shaw, L.3
Busse, L.4
Thielen, P.5
Nguyen, V.6
Pureza, P.7
Bayya, S.8
Kung, F.9
-
229
-
-
0028442309
-
Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared
-
J. Sanghera, L. Busse, and I. Aggarwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885–4891 (1994).
-
(1994)
J. Appl. Phys.
, vol.75
, pp. 4885-4891
-
-
Sanghera, J.1
Busse, L.2
Aggarwal, I.3
-
230
-
-
0343760453
-
Field effect in chalcogenide glasses
-
R. C. Frye and D. Adler, “Field effect in chalcogenide glasses,” Phys. Rev. B 24, 5812 (1981).
-
(1981)
Phys. Rev. B
, vol.24
-
-
Frye, R.C.1
Adler, D.2
-
231
-
-
0016988404
-
The switching mechanisms in amorphous chalcogenide memory devices
-
A. G. Steventon, “The switching mechanisms in amorphous chalcogenide memory devices,” J. Non-Cryst. Solids 21, 319–329 (1976).
-
(1976)
J. Non-Cryst. Solids
, vol.21
, pp. 319-329
-
-
Steventon, A.G.1
-
232
-
-
84890017202
-
Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared
-
P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 29927-29937
-
-
Ma, P.1
Choi, D.-Y.2
Yu, Y.3
Gai, X.4
Yang, Z.5
Debbarma, S.6
Madden, S.7
Luther-Davies, B.8
-
233
-
-
78650038787
-
Integrated chalcogenide waveguide resonators for mid-IR sensing: Leveraging material properties to meet fabrication challenges
-
N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 26728-26743
-
-
Carlie, N.1
Musgraves, J.D.2
Zdyrko, B.3
Luzinov, I.4
Hu, J.5
Singh, V.6
Agarwal, A.7
Kimerling, L.C.8
Canciamilla, A.9
Morichetti, F.10
Melloni, A.11
Richardson, K.12
-
234
-
-
84884172796
-
Mid-infrared supercontinuum generation in chalcogenides
-
Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
-
(2013)
Opt. Mater. Express
, vol.3
, pp. 1075-1086
-
-
Yu, Y.1
Gai, X.2
Wang, T.3
Ma, P.4
Wang, R.5
Yang, Z.6
Choi, D.-Y.7
Madden, S.8
Luther-Davies, B.9
-
235
-
-
84921727874
-
Midinfrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system
-
S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Midinfrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23, 1300–1307 (2015).
-
(2015)
Opt. Express
, vol.23
, pp. 1300-1307
-
-
Dai, S.1
Chen, F.2
Xu, Y.3
Xu, Z.4
Shen, X.5
Xu, T.6
Wang, R.7
Ji, W.8
-
236
-
-
84865596699
-
Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering
-
A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20, 18836–18845 (2012).
-
(2012)
Opt. Express
, vol.20
, pp. 18836-18845
-
-
Byrnes, A.1
Pant, R.2
Li, E.3
Choi, D.-Y.4
Poulton, C.G.5
Fan, S.6
Madden, S.7
Luther-Davies, B.8
Eggleton, B.J.9
-
237
-
-
84924237356
-
Internal gain in Er-doped As2S3 chalcogenide planar waveguides
-
K. Yan, K. Vu, and S. Madden, “Internal gain in Er-doped As2S3 chalcogenide planar waveguides,” Opt. Lett. 40, 796–799 (2015).
-
(2015)
Opt. Lett.
, vol.40
, pp. 796-799
-
-
Yan, K.1
Vu, K.2
Madden, S.3
-
238
-
-
84870309738
-
Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass
-
T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express 2, 1556–1561 (2012).
-
(2012)
Opt. Mater. Express
, vol.2
, pp. 1556-1561
-
-
Sabapathy, T.1
Ayiriveetil, A.2
Kar, A.K.3
Asokan, S.4
Beecher, S.J.5
-
239
-
-
79952151630
-
Chalcogenide photonics
-
B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
-
(2011)
Nat. Photonics
, vol.5
, pp. 141-148
-
-
Eggleton, B.J.1
Luther-Davies, B.2
Richardson, K.3
-
240
-
-
34547443072
-
Ultrafast all-optical chalcogenide glass photonic circuits
-
V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 9205-9221
-
-
Ta’eed, V.1
Baker, N.J.2
Fu, L.3
Finsterbusch, K.4
Lamont, M.R.E.5
Moss, D.J.6
Nguyen, H.C.7
Eggleton, B.J.8
Choi, D.-Y.9
Madden, S.10
Luther-Davies, B.11
-
241
-
-
27644508655
-
Chalcogenide glass thin films and planar waveguides
-
R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
-
(2005)
J. Am. Ceram. Soc.
, vol.88
, pp. 2451-2455
-
-
Curry, R.J.1
Mairaj, A.K.2
Huang, C.C.3
Eason, R.W.4
Grivas, C.5
Hewak, D.W.6
Badding, J.V.7
-
242
-
-
2942707778
-
Deposition and characterization of germanium sulphide glass planar waveguides
-
C. C. Huang, D. Hewak, and J. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12, 2501–2506 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 2501-2506
-
-
Huang, C.C.1
Hewak, D.2
Badding, J.3
-
243
-
-
21844445812
-
Chalcogenide glass 1D photonic bandgap hollow fiber
-
B. F. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66–72 (2005).
-
(2005)
Proc. SPIE
, vol.5691
, pp. 66-72
-
-
Bowden, B.F.1
Harrington, J.A.2
Cutrera, J.L.3
-
244
-
-
84884691372
-
Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers
-
S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30, 2498–2506 (2013).
-
(2013)
J. Opt. Soc. Am. B
, vol.30
, pp. 2498-2506
-
-
Shabahang, S.1
Tao, G.2
Kaufman, J.J.3
Abouraddy, A.F.4
-
245
-
-
84861812791
-
Nonlinear properties of chalcogenide glass fibers
-
J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
-
(2010)
Int. J. Appl. Glass Sci.
, vol.1
, pp. 296-308
-
-
Sanghera, J.S.1
Shaw, L.B.2
Pureza, P.3
Nguyen, V.Q.4
Gibson, D.5
Busse, L.6
Aggarwal, I.D.7
Florea, C.M.8
Kung, F.H.9
-
246
-
-
84867225214
-
All-fiber chalcogenide-based midinfrared supercontinuum source
-
R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based midinfrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
-
(2012)
Opt. Fiber Technol.
, vol.18
, pp. 345-348
-
-
Gattass, R.R.1
Brandon Shaw, L.2
Nguyen, V.Q.3
Pureza, P.C.4
Aggarwal, I.D.5
Sanghera, J.S.6
-
248
-
-
84908473315
-
Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre
-
C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
-
(2014)
Nat. Photonics
, vol.8
, pp. 830-834
-
-
Petersen, C.R.1
Møller, U.2
Kubat, I.3
Zhou, B.4
Dupont, S.5
Ramsay, J.6
Benson, T.7
Sujecki, S.8
Abdel-Moneim, N.9
Tang, Z.10
Furniss, D.11
Seddon, A.12
Bang, O.13
-
249
-
-
84927695542
-
Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation
-
P. Yang, P. Zhang, S. Dai, Y. Wu, X. Wang, G. Tao, and Q. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62, 729–737 (2015).
-
(2015)
J. Mod. Opt.
, vol.62
, pp. 729-737
-
-
Yang, P.1
Zhang, P.2
Dai, S.3
Wu, Y.4
Wang, X.5
Tao, G.6
Nie, Q.7
-
250
-
-
84922800369
-
Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber
-
U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
-
(2015)
Opt. Express
, vol.23
, pp. 3282-3291
-
-
Moller, U.1
Yu, Y.2
Kubat, I.3
Petersen, C.R.4
Gai, X.5
Brilland, L.6
Mechin, D.7
Caillaud, C.8
Troles, J.9
Luther-Davies, B.10
Bang, O.11
-
251
-
-
84908430993
-
Mid-infrared second-harmonic generation in chalcogenide photonic crystal fiber
-
F. Z. Cao, P. Q. Zhang, S. X. Dai, X. S. Wang, T. F. Xu, and Q. H. Nie, “Mid-infrared second-harmonic generation in chalcogenide photonic crystal fiber,” Opt. Commun. 335, 257–261 (2015).
-
(2015)
Opt. Commun.
, vol.335
, pp. 257-261
-
-
Cao, F.Z.1
Zhang, P.Q.2
Dai, S.X.3
Wang, X.S.4
Xu, T.F.5
Nie, Q.H.6
-
252
-
-
84906949615
-
Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber
-
W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116, 847–853 (2014).
-
(2014)
Appl. Phys. B
, vol.116
, pp. 847-853
-
-
Gao, W.Q.1
Duan, Z.C.2
Asano, K.3
Cheng, T.L.4
Deng, D.H.5
Matsumoto, M.6
Misumi, T.7
Suzuki, T.8
Ohishi, Y.9
-
253
-
-
84877106646
-
Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber
-
W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 9573-9583
-
-
Gao, W.Q.1
El Amraoui, M.2
Liao, M.S.3
Kawashima, H.4
Duan, Z.C.5
Deng, D.H.6
Cheng, T.L.7
Suzuki, T.8
Messaddeq, Y.9
Ohishi, Y.10
-
254
-
-
84868231360
-
Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm
-
A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012).
-
(2012)
Opt. Express
, vol.20
, pp. 24218-24225
-
-
Marandi, A.1
Rudy, C.W.2
Plotnichenko, V.G.3
Dianov, E.M.4
Vodopyanov, K.L.5
Byer, R.L.6
-
255
-
-
79957566380
-
Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping
-
J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
-
(2011)
Electron. Lett.
, vol.47
, pp. 398-399
-
-
Fatome, J.1
Kibler, B.2
El-Amraoui, M.3
Jules, J.C.4
Gadret, G.5
Desevedavy, F.6
Smektala, F.7
-
256
-
-
0033358889
-
Active and passive chalcogenide glass optical fibers for IR applications: A review
-
J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999)
-
(1999)
J. Non-Cryst. Solids
, vol.256-257
, pp. 6-16
-
-
Sanghera, J.S.1
Aggarwal, I.D.2
-
257
-
-
78751647253
-
Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser
-
J. F. Li, Y. Chen, M. Chen, H. Chen, X. B. Jin, Y. Yang, Z. Y. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
-
(2011)
Opt. Commun.
, vol.284
, pp. 1278-1283
-
-
Li, J.F.1
Chen, Y.2
Chen, M.3
Chen, H.4
Jin, X.B.5
Yang, Y.6
Dai, Z.Y.7
Liu, Y.8
-
259
-
-
2942709613
-
Modeling of a mid-IR chalcogenide fiber Raman laser
-
P. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of a mid-IR chalcogenide fiber Raman laser,” Opt. Express 11, 3248–3253 (2003).
-
(2003)
Opt. Express
, vol.11
, pp. 3248-3253
-
-
Thielen, P.1
Shaw, L.2
Sanghera, J.3
Aggarwal, I.4
-
260
-
-
0041425214
-
Small-core As-Se fiber for Raman amplification
-
P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “Small-core As-Se fiber for Raman amplification,” Opt. Lett. 28, 1406–1408 (2003).
-
(2003)
Opt. Lett.
, vol.28
, pp. 1406-1408
-
-
Thielen, P.A.1
Shaw, L.B.2
Pureza, P.C.3
Nguyen, V.Q.4
Sanghera, J.S.5
Aggarwal, I.D.6
-
261
-
-
10044268633
-
3 chalcogenide fibers
-
3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
-
(2004)
J. Opt. Soc. Am. B
, vol.21
, pp. 1146-1155
-
-
Slusher, R.E.1
Lenz, G.2
Hodelin, J.3
Sanghera, J.4
Shaw, L.B.5
Aggarwal, I.D.6
-
262
-
-
84898014695
-
3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber
-
M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39, 2052–2055 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 2052-2055
-
-
Bernier, M.1
Fortin, V.2
El-Amraoui, M.3
Messaddeq, Y.4
Vallée, R.5
-
263
-
-
84872591679
-
Mid-infrared chalcogenide glass Raman fiber laser
-
M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38, 127–129 (2013).
-
(2013)
Opt. Lett.
, vol.38
, pp. 127-129
-
-
Bernier, M.1
Fortin, V.2
Caron, N.3
El-Amraoui, M.4
Messaddeq, Y.5
Vallée, R.6
-
264
-
-
0042328037
-
Rare-earth doped chalcogenide glasses for fiber-optic amplifiers
-
J. Heo, “Rare-earth doped chalcogenide glasses for fiber-optic amplifiers,” J. Non-Cryst. Solids 326–327, 410–415 (2003).
-
(2003)
J. Non-Cryst. Solids
, vol.326-327
, pp. 410-415
-
-
Heo, J.1
-
265
-
-
55349103759
-
Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses
-
Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33, 2293–2295 (2008).
-
(2008)
Opt. Lett.
, vol.33
, pp. 2293-2295
-
-
Xu, Y.1
Chen, D.2
Wang, W.3
Zhang, Q.4
Zeng, H.5
Shen, C.6
Chen, G.7
-
266
-
-
69049091966
-
2 chalcohalide glasses
-
2 chalcohalide glasses,” Opt. Express 17, 15350–15358 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 15350-15358
-
-
Guo, H.1
Liu, L.2
Wang, Y.3
Hou, C.4
Li, W.5
Lu, M.6
Zou, K.7
Peng, B.8
-
267
-
-
75949120154
-
3+-doped Ge- In-S-CsI chalcohalide glasses for 1.3 μm optical fiber amplifier
-
3+-doped Ge- In-S-CsI chalcohalide glasses for 1.3 μm optical fiber amplifier,” J. Optoelectron. Adv. Mater. 11, 924–928 (2009).
-
(2009)
J. Optoelectron. Adv. Mater.
, vol.11
, pp. 924-928
-
-
Feng, L.1
Guo, H.2
Tao, G.3
Lu, M.4
Wei, W.5
Peng, B.6
-
268
-
-
0003182028
-
Properties of dysprosium-doped gallium lanthanum sulfide fiber amplifiers operating at 1.3 μm
-
B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium-doped gallium lanthanum sulfide fiber amplifiers operating at 1.3 μm,” Opt. Lett. 22, 703–705 (1997).
-
(1997)
Opt. Lett.
, vol.22
, pp. 703-705
-
-
Samson, B.N.1
Schweizer, T.2
Hewak, D.W.3
Laming, R.I.4
-
269
-
-
0031120129
-
Quantum-efficiency measurements in oxygen-containing gallium lanthanum sulphide glasses and fibers doped with Pr3+
-
J. R. Hector, D. W. Hewak, J. Wang, R. C. Moore, and W. S. Brocklesby, “Quantum-efficiency measurements in oxygen-containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photon. Technol. Lett. 9, 443–445 (1997).
-
(1997)
IEEE Photon. Technol. Lett.
, vol.9
, pp. 443-445
-
-
Hector, J.R.1
Hewak, D.W.2
Wang, J.3
Moore, R.C.4
Brocklesby, W.S.5
-
270
-
-
50049087216
-
3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy
-
3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
-
(2008)
Opt. Mater.
, vol.31
, pp. 39-46
-
-
Moizan, V.1
Nazabal, V.2
Troles, J.3
Houizot, P.4
Adam, J.-L.5
Doualan, J.-L.6
Moncorgé, R.7
Smektala, F.8
Gadret, G.9
Pitois, S.10
Canat, G.11
-
271
-
-
84880050641
-
3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers
-
3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
-
(2013)
Mater. Lett.
, vol.101
, pp. 21-24
-
-
Charpentier, F.1
Starecki, F.2
Doualan, J.L.3
Jóvári, P.4
Camy, P.5
Troles, J.6
Belin, S.7
Bureau, B.8
Nazabal, V.9
-
272
-
-
18844480742
-
Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass
-
T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
-
(1997)
J. Lumin.
, vol.7274
, pp. 419-421
-
-
Schweizer, T.1
Hewak, D.W.2
Samson, B.N.3
Payne, D.N.4
-
273
-
-
70349558279
-
Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration
-
G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
-
(2009)
J. Am. Ceram. Soc.
, vol.92
, pp. 2226-2229
-
-
Tao, G.1
Guo, H.2
Feng, L.3
Lu, M.4
Wei, W.5
Peng, B.6
-
274
-
-
84886075026
-
3 nanocrystals embedded chalcohalide glasses ceramics
-
3 nanocrystals embedded chalcohalide glasses ceramics,” J. Non-Cryst. Solids 381, 65–67 (2013).
-
(2013)
J. Non-Cryst. Solids
, vol.381
, pp. 65-67
-
-
Xu, W.1
Ren, J.2
Zhang, Z.3
Chen, G.4
Kong, D.5
Gu, C.6
Chen, C.7
Kong, L.8
-
275
-
-
60049095031
-
Chalcogenide glass-fiber-based Mid-IR sources and applications
-
J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
-
(2009)
IEEE J. Sel. Top. Quantum Electron.
, vol.15
, pp. 114-119
-
-
Sanghera, J.S.1
Brandon Shaw, L.2
Aggarwal, I.D.3
-
276
-
-
34248352271
-
Chalcogenide glass fiberbased Mid-IR sources and applications
-
I. D. Aggarwal, L. B. Shaw, and J. S. Sanghera, “Chalcogenide glass fiberbased Mid-IR sources and applications,” Proc. SPIE 6453, 645312 (2007).
-
(2007)
Proc. SPIE
, vol.6453
-
-
Aggarwal, I.D.1
Shaw, L.B.2
Sanghera, J.S.3
-
277
-
-
74249119677
-
The application of Ga:La:S-based glass for optical amplification at 1.3 μm
-
J. A. Medeiros Neto, E. R. Taylor, B. N. Samson, J. Wang, D. W. Hewak, R. I. Laming, D. N. Payne, E. Tarbox, P. D. Maton, G. M. Roba, B. E. Kinsman, and R. Hanney, “The application of Ga:La:S-based glass for optical amplification at 1.3 μm,” J. Non-Cryst. Solids 184, 292–296 (1995).
-
(1995)
J. Non-Cryst. Solids
, vol.184
, pp. 292-296
-
-
Medeiros Neto, J.A.1
Taylor, E.R.2
Samson, B.N.3
Wang, J.4
Hewak, D.W.5
Laming, R.I.6
Payne, D.N.7
Tarbox, E.8
Maton, P.D.9
Roba, G.M.10
Kinsman, B.E.11
Hanney, R.12
-
278
-
-
0030086962
-
Gallium lanthanum sulphide optical fibre for active and passive applications
-
D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384 (1996).
-
(1996)
Electron. Lett.
, vol.32
-
-
Hewak, D.W.1
Moore, R.C.2
Schweizer, T.3
Wang, J.4
Samson, B.5
Brocklesby, W.S.6
Payne, D.N.7
Tarbox, E.J.8
-
279
-
-
0031221564
-
3+-doped fiber amplifiers at 1.3 μm
-
3+-doped fiber amplifiers at 1.3 μm,” Appl. Phys. Lett. 71, 1753–1755 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 1753-1755
-
-
Wang, J.1
Hector, J.R.2
Brady, D.3
Hewak, D.4
Brocklesby, B.5
Kluth, M.6
Moore, R.7
Payne, D.N.8
-
280
-
-
0000319056
-
Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications
-
T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
-
(1997)
Opt. Express
, vol.1
, pp. 102-107
-
-
Schweizer, T.1
Brady, D.2
Hewak, D.W.3
-
281
-
-
0035627235
-
Site-selective spectroscopy in dysprosium-doped chalcogenide glasses for 1.3-μm optical-fiber amplifiers
-
T. Schweizer, F. Goutaland, E. Martins, D. W. Hewak, and W. S. Brocklesby, “Site-selective spectroscopy in dysprosium-doped chalcogenide glasses for 1.3-μm optical-fiber amplifiers,” J. Opt. Soc. Am. B 18, 1436–1442 (2001).
-
(2001)
J. Opt. Soc. Am. B
, vol.18
, pp. 1436-1442
-
-
Schweizer, T.1
Goutaland, F.2
Martins, E.3
Hewak, D.W.4
Brocklesby, W.S.5
-
282
-
-
0033169426
-
Infrared emission from holmium doped gallium lanthanum sulphide glass, Infrared Phys
-
T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
-
(1999)
Technol.
, vol.40
, pp. 329-335
-
-
Schweizer, T.1
Samson, B.N.2
Hector, J.R.3
Brocklesby, W.S.4
Hewak, D.W.5
Payne, D.N.6
-
283
-
-
0031074544
-
Rare-earth doped chalcogenide glass fibre laser
-
T. Schweizer, B. Samson, R. Moore, D. Hewak, and D. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett 33, 414–416 (1997).
-
(1997)
Electron. Lett
, vol.33
, pp. 414-416
-
-
Schweizer, T.1
Samson, B.2
Moore, R.3
Hewak, D.4
Payne, D.5
-
284
-
-
0001418826
-
Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies
-
H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
-
(1997)
Appl. Opt.
, vol.36
, pp. 5839-5843
-
-
Takebe, H.1
Yoshino, K.2
Murata, T.3
Morinaga, K.4
Hector, J.5
Brocklesby, W.S.6
Hewak, D.W.7
Wang, J.8
Payne, D.N.9
-
285
-
-
79951727511
-
Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation
-
S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42, 69–79 (2010).
-
(2010)
Opt. Quantum Electron.
, vol.42
, pp. 69-79
-
-
Sujecki, S.1
Sójka, L.2
Bereś-Pawlik, E.3
Tang, Z.4
Furniss, D.5
Seddon, A.B.6
Benson, T.M.7
-
286
-
-
84919759393
-
Pulsed laser deposition of rareearth- doped gallium lanthanum sulphide chalcogenide glass thin films
-
O. G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier, P. Nemec, V. Nazabal, N. Cimpoesu, and C. Focsa, “Pulsed laser deposition of rareearth- doped gallium lanthanum sulphide chalcogenide glass thin films,” Appl. Phys. A 117, 197–205 (2014).
-
(2014)
Appl. Phys. A
, vol.117
, pp. 197-205
-
-
Pompilian, O.G.1
Dascalu, G.2
Mihaila, I.3
Gurlui, S.4
Olivier, M.5
Nemec, P.6
Nazabal, V.7
Cimpoesu, N.8
Focsa, C.9
-
287
-
-
84857541375
-
Enhancing emission properties of rare earth ions in chalcogenide glass via minute compositional adjustments
-
Y. G. Choi, “Enhancing emission properties of rare earth ions in chalcogenide glass via minute compositional adjustments,” J. Nonlinear Opt. Phys. Mater. 19, 663–671 (2010).
-
(2010)
J. Nonlinear Opt. Phys. Mater.
, vol.19
, pp. 663-671
-
-
Choi, Y.G.1
-
288
-
-
70349771917
-
Local structural environment and intra-4f transition of rare-earth ion in chalcogenide glass: Comparison between Dy-doped Ge-As-S and Ge-Ga-S glasses
-
Y. G. Choi and J. H. Song, “Local structural environment and intra-4f transition of rare-earth ion in chalcogenide glass: comparison between Dy-doped Ge-As-S and Ge-Ga-S glasses,” J. Non-Cryst. Solids 355, 2396–2399 (2009).
-
(2009)
J. Non-Cryst. Solids
, vol.355
, pp. 2396-2399
-
-
Choi, Y.G.1
Song, J.H.2
-
289
-
-
34548587927
-
Annealing process dependence of the photoluminescence in rare-earth-ion-doped chalcogenide glass
-
K. Hachiya and H. Ohashi, “Annealing process dependence of the photoluminescence in rare-earth-ion-doped chalcogenide glass,” Electrochim. Acta 53, 7–10 (2007).
-
(2007)
Electrochim. Acta
, vol.53
, pp. 7-10
-
-
Hachiya, K.1
Ohashi, H.2
-
291
-
-
0037409857
-
Multiphonon energy gap law in rareearth doped chalcogenide glass
-
R. S. Quimby and B. G. Aitken, “Multiphonon energy gap law in rareearth doped chalcogenide glass,” J. Non-Cryst. Solids 320, 100–112 (2003).
-
(2003)
J. Non-Cryst. Solids
, vol.320
, pp. 100-112
-
-
Quimby, R.S.1
Aitken, B.G.2
-
292
-
-
0035444815
-
Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber
-
L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
-
(2001)
IEEE J. Quantum Electron.
, vol.37
, pp. 1127-1137
-
-
Shaw, L.B.1
Cole, B.2
Thielen, P.A.3
Sanghera, J.S.4
Aggarwal, I.D.5
-
293
-
-
0031074544
-
Rare-earth doped chalcogenide glass fibre laser
-
T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
-
(1997)
Electron. Lett.
, vol.33
, pp. 414-416
-
-
Schweizer, T.1
Samson, B.N.2
Moore, R.C.3
Hewak, D.W.4
Payne, D.N.5
-
294
-
-
0030105590
-
Rareearth doped chalcogenide glass laser
-
T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rareearth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
-
(1996)
Electron. Lett.
, vol.32
, pp. 666-667
-
-
Schweizer, T.1
Hewak, D.W.2
Payne, D.N.3
Jensen, T.4
Huber, G.5
-
295
-
-
84982699987
-
Rare-earth-doped chalcogenide glass laser
-
B. R. Marx, “Rare-earth-doped chalcogenide glass laser,” Laser Focus World 32, 25–26 (1996).
-
(1996)
Laser Focus World
, vol.32
, pp. 25-26
-
-
Marx, B.R.1
-
296
-
-
0032207455
-
Modeling of Dy3+-doped GeAsSe glass 1.3-μm optical fiber amplifiers
-
D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and D. Aggarwal, “Modeling of Dy3+-doped GeAsSe glass 1.3-μm optical fiber amplifiers,” IEEE Photon. Technol. Lett. 10, 1548–1550 (1998).
-
(1998)
IEEE Photon. Technol. Lett.
, vol.10
, pp. 1548-1550
-
-
Schaafsma, D.T.1
Shaw, L.B.2
Cole, B.3
Sanghera, J.S.4
Aggarwal, D.5
-
297
-
-
0033362178
-
Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR
-
B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
-
(1999)
J. Non-Cryst. Solids
, vol.256-257
, pp. 253-259
-
-
Cole, B.1
Shaw, L.B.2
Pureza, P.C.3
Mossadegh, R.4
Sanghera, J.S.5
Aggarwal, I.D.6
-
298
-
-
0035961145
-
3+ for active mid-IR applications
-
3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20, 465–467 (2001).
-
(2001)
J. Mater. Sci. Lett.
, vol.20
, pp. 465-467
-
-
Cole, B.1
Shaw, L.B.2
Pureza, P.C.3
Miklos, R.4
Sanghera, J.S.5
Aggarwal, I.D.6
-
299
-
-
84870352010
-
3+
-
3+,” Opt. Mater. Express 2, 1632–1640 (2012).
-
(2012)
Opt. Mater. Express
, vol.2
, pp. 1632-1640
-
-
Sojka, L.1
Tang, Z.2
Zhu, H.3
Beres-Pawlik, E.4
Furniss, D.5
Seddon, A.B.6
Benson, T.M.7
Sujecki, S.8
-
303
-
-
0035419489
-
Sulphide glasses doped with rare earth elements
-
D. Lezal, M. Poulain, and J. Zavadil, “Sulphide glasses doped with rare earth elements,” Ceramics 45, 105–110 (2001).
-
(2001)
Ceramics
, vol.45
, pp. 105-110
-
-
Lezal, D.1
Poulain, M.2
Zavadil, J.3
-
304
-
-
84899675883
-
3+ codopedchalcohalide glasses for high-efficiency c-Si solar cells
-
3+ codoped chalcohalide glasses for high-efficiency c-Si solar cells,” Opt. Lett. 39, 2225–2228 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 2225-2228
-
-
Xu, Y.-S.1
Huang, F.2
Fan, B.3
Lin, C.-G.4
Dai, S.-X.5
Chen, L.-Y.6
Nie, Q.-H.7
Ma, H.-L.8
Zhang, X.-H.9
-
305
-
-
84867224834
-
Melt homogenization and self-organization in chalcogenides-part I
-
S. Bhosle, K. Gunasekera, P. Boolchand, and M. Micoulaut, “Melt homogenization and self-organization in chalcogenides-part I,” Int. J. Appl. Glass Sci. 3, 189–204 (2012).
-
(2012)
Int. J. Appl. Glass Sci.
, vol.3
, pp. 189-204
-
-
Bhosle, S.1
Gunasekera, K.2
Boolchand, P.3
Micoulaut, M.4
-
306
-
-
15944413397
-
Applications of chalcogenide glass optical fibers
-
J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
-
(2002)
C. R. Chim.
, vol.5
, pp. 873-883
-
-
Sanghera, J.S.1
Shaw, L.B.2
Aggarwal, I.D.3
-
307
-
-
1842609968
-
Infrared fibers based on Te–As–Se glass system with low optical losses
-
V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
-
(2004)
J. Non-Cryst. Solids
, vol.336
, pp. 113-119
-
-
Shiryaev, V.S.1
Adam, J.L.2
Zhang, X.H.3
Boussard-Plédel, C.4
Lucas, J.5
Churbanov, M.F.6
-
308
-
-
76249114630
-
2 detection using microstructured chalcogenide fibers
-
2 detection using microstructured chalcogenide fibers,” Sens. Lett. 7, 745–749 (2009).
-
(2009)
Sens. Lett.
, vol.7
, pp. 745-749
-
-
Charpentier, F.1
Troles, J.2
Coulombier, Q.3
Brilland, L.4
Houizot, P.5
Smektala, F.6
Boussard-Plédel, C.7
Nazabal, V.8
Thibaud, N.9
Le Pierres, K.10
-
309
-
-
0042328031
-
Chalcogenide glass fibers used as biosensors
-
J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Solids 326–327, 430–433 (2003).
-
(2003)
J. Non-Cryst. Solids
, vol.326-327
, pp. 430-433
-
-
Keirsse, J.1
Boussard-Plédel, C.2
Loreal, O.3
Sire, O.4
Bureau, B.5
Turlin, B.6
Leroyer, P.7
Lucas, J.8
-
310
-
-
74049152971
-
Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans
-
M.-L. Anne, C. Le Lan, V. Monbet, C. Boussard-Plédel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, and J. L. Adam, “Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans,” J. Biomed. Opt. 14, 054033 (2009).
-
(2009)
J. Biomed. Opt.
, vol.14
-
-
Anne, M.-L.1
Le Lan, C.2
Monbet, V.3
Boussard-Plédel, C.4
Ropert, M.5
Sire, O.6
Pouchard, M.7
Jard, C.8
Lucas, J.9
Adam, J.L.10
-
311
-
-
2442675599
-
Metabolic imaging of tissues by infrared fiber-optic spectroscopy: An efficient tool for medical diagnosis
-
S. Hocde, O. Lore, O. Sire, C. Boussard-Ple, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
-
(2004)
J. Biomed. Opt.
, vol.9
, pp. 404-407
-
-
Hocde, S.1
Lore, O.2
Sire, O.3
Boussard-Ple, C.4
Bureau, B.5
Turlin, B.6
Keirsse, J.7
Leroyer, P.8
Lucas, J.9
-
312
-
-
0038711438
-
IR optical fiber sensor for biomedical applications
-
J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc 32, 23–32 (2003).
-
(2003)
Vib. Spectrosc
, vol.32
, pp. 23-32
-
-
Keirsse, J.1
Boussard-Plédel, C.2
Loreal, O.3
Sire, O.4
Bureau, B.5
Leroyer, P.6
Turlin, B.7
Lucas, J.8
-
313
-
-
33644935997
-
Advances in chalcogenide fiber evanescent wave biochemical sensing
-
P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
-
(2006)
Anal. Biochem.
, vol.351
, pp. 1-10
-
-
Lucas, P.1
Riley, M.R.2
Boussard-Plédel, C.3
Bureau, B.4
-
314
-
-
84877617473
-
A prospective for new mid-infrared medical endoscopy using chalcogenide glasses
-
A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2, 177–191 (2011).
-
(2011)
Int. J. Appl. Glass Sci.
, vol.2
, pp. 177-191
-
-
Seddon, A.B.1
-
315
-
-
0042328029
-
Development of a chalcogenide glass fiber device for in situ pollutant detection
-
K. Michel, B. Bureau, C. Pouvreau, J. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, and H. Steinner, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids 326, 434–438 (2003).
-
(2003)
J. Non-Cryst. Solids
, vol.326
, pp. 434-438
-
-
Michel, K.1
Bureau, B.2
Pouvreau, C.3
Sangleboeuf, J.4
Boussard-Plédel, C.5
Jouan, T.6
Rouxel, T.7
Adam, J.-L.8
Staubmann, K.9
Steinner, H.10
-
316
-
-
0028513981
-
Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers
-
J. S. Sanghera, F. H. Kung, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994).
-
(1994)
Appl. Opt.
, vol.33
, pp. 6315-6322
-
-
Sanghera, J.S.1
Kung, F.H.2
Pureza, P.C.3
Nguyen, V.Q.4
Miklos, R.E.5
Aggarwal, I.D.6
-
317
-
-
84986384826
-
Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers
-
J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
-
(1995)
J. Am. Ceram. Soc.
, vol.78
, pp. 2198-2202
-
-
Sanghera, J.S.1
Kung, F.H.2
Busse, L.E.3
Pureza, P.C.4
Aggarwal, I.D.5
-
318
-
-
33749182361
-
A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications
-
S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847–1852 (2006).
-
(2006)
Adv. Funct. Mater.
, vol.16
, pp. 1847-1852
-
-
Danto, S.1
Houizot, P.2
Boussard-Pledel, C.3
Zhang, X.H.4
Smektala, F.5
Lucas, J.6
-
319
-
-
84877748335
-
Preparation of high purity Te-rich Ge-Te-Se fibers for 5–15 μm infrared range
-
C. Conseil, V. S. Shiryaev, S. Cui, C. Boussard-Pledel, J. Troles, A. P. Velmuzhov, A. M. Potapov, A. I. Suchkov, M. F. Churbanov, and B. Bureau, “Preparation of high purity Te-rich Ge-Te-Se fibers for 5–15 μm infrared range,” J. Lightwave Technol. 31, 1703–1707 (2013)
-
(2013)
J. Lightwave Technol
, vol.31
, pp. 1703-1707
-
-
Conseil, C.1
Shiryaev, V.S.2
Cui, S.3
Boussard-Pledel, C.4
Troles, J.5
Velmuzhov, A.P.6
Potapov, A.M.7
Suchkov, A.I.8
Churbanov, M.F.9
Bureau, B.10
-
320
-
-
84899698773
-
75 chalcogenide glass for far-IR optics applications
-
75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65, 77–82 (2014).
-
(2014)
Infrared Phys. Technol.
, vol.65
, pp. 77-82
-
-
Xu, H.J.1
He, Y.J.2
Wang, X.S.3
Nie, Q.H.4
Zhang, P.Q.5
Xu, T.F.6
Dai, S.X.7
Zhang, X.H.8
Tao, G.M.9
-
321
-
-
0001382273
-
New optical glasses with good transparency in the infrared
-
R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43, 1153–1157 (1953).
-
(1953)
J. Opt. Soc. Am.
, vol.43
, pp. 1153-1157
-
-
Frerichs, R.1
-
322
-
-
84901023044
-
Fiber optics. XI. Performance in the infrared region
-
N. Kapany and R. Simms, “Fiber optics. XI. Performance in the infrared region,” J. Opt. Soc. Am. 55, 963–967 (1965).
-
(1965)
J. Opt. Soc. Am.
, vol.55
, pp. 963-967
-
-
Kapany, N.1
Simms, R.2
-
324
-
-
0020086732
-
Optical transmission loss of As–S glass fiber in 1.0–5.5 μm wavelength region
-
T. Miyashita and Y. Terunuma, “Optical transmission loss of As–S glass fiber in 1.0–5.5 μm wavelength region,” Jpn. J. Appl. Phys. 21, L75 (1982).
-
(1982)
Jpn. J. Appl. Phys.
, vol.21
-
-
Miyashita, T.1
Terunuma, Y.2
-
325
-
-
0021526609
-
Low loss Ge-Se chalcogenide glass optical fibers
-
T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45, 925–927 (1984).
-
(1984)
Appl. Phys. Lett.
, vol.45
, pp. 925-927
-
-
Katsuyama, T.1
Ishida, K.2
Satoh, S.3
Matsumura, H.4
-
326
-
-
0040411635
-
Low-loss Te-based chalcogenide glass optical fibers
-
T. Katsuyama and H. Matsumura, “Low-loss Te-based chalcogenide glass optical fibers,” Appl. Phys. Lett. 49, 22–23 (1986).
-
(1986)
Appl. Phys. Lett.
, vol.49
, pp. 22-23
-
-
Katsuyama, T.1
Matsumura, H.2
-
327
-
-
0042965477
-
Scattering loss characteristics of selenide-based chalcogenide glass optical fibers
-
T. Katsuyama, S. Satoh, and H. Matsumura, “Scattering loss characteristics of selenide-based chalcogenide glass optical fibers,” J. Appl. Phys. 71, 4132–4135 (1992).
-
(1992)
J. Appl. Phys.
, vol.71
, pp. 4132-4135
-
-
Katsuyama, T.1
Satoh, S.2
Matsumura, H.3
-
328
-
-
0028403887
-
Light transmission characteristics of telluride-based chalcogenide glass for infrared fiber application
-
T. Katsuyama and H. Matsumura, “Light transmission characteristics of telluride-based chalcogenide glass for infrared fiber application,” J. Appl. Phys. 75, 2743–2748 (1994).
-
(1994)
J. Appl. Phys.
, vol.75
, pp. 2743-2748
-
-
Katsuyama, T.1
Matsumura, H.2
-
329
-
-
84975635013
-
Infrared image guide with bundled As-S glass fibers
-
M. Saito, M. Takizawa, S. Sakuragi, and F. Tanei, “Infrared image guide with bundled As-S glass fibers,” Appl. Opt. 24, 2304–2308 (1985).
-
(1985)
Appl. Opt.
, vol.24
, pp. 2304-2308
-
-
Saito, M.1
Takizawa, M.2
Sakuragi, S.3
Tanei, F.4
-
330
-
-
84883821262
-
Optical loss increase in an As-S glass infrared fiber due to water diffusion
-
M. Saito, “Optical loss increase in an As-S glass infrared fiber due to water diffusion,” Appl. Opt. 26, 202–203 (1987).
-
(1987)
Appl. Opt.
, vol.26
, pp. 202-203
-
-
Saito, M.1
-
331
-
-
0004923017
-
Chalcogenide glass fiber with a core-cladding structure
-
J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28, 5122–5127 (1989).
-
(1989)
Appl. Opt.
, vol.28
, pp. 5122-5127
-
-
Nishii, J.1
Yamashita, T.2
Yamagishi, T.3
-
332
-
-
0031121707
-
Temperature dependence of transmission loss of chalcogenide glass fibers
-
I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229 (1997).
-
(1997)
Jpn. J. Appl. Phys.
, vol.36
, pp. 2229
-
-
Inagawa, I.1
Morimoto, S.2
Yamashita, T.3
Shirotani, I.4
-
334
-
-
0031084624
-
Chalcogenide fiber bundle for 3D spectroscopy, Infrared Phys
-
H. Suto, “Chalcogenide fiber bundle for 3D spectroscopy,” Infrared Phys. Technol. 38, 93–99 (1997).
-
(1997)
Technol.
, vol.38
, pp. 93-99
-
-
Suto, H.1
-
335
-
-
33745439843
-
3 chalcogenide fiber
-
3 chalcogenide fiber,” Opt. Lett. 31, 1615–1617 (2006).
-
(2006)
Opt. Lett.
, vol.31
, pp. 1615-1617
-
-
Abedin, K.S.1
-
336
-
-
24644497065
-
Low-loss chalcogenide glass fiber with core-cladding structure
-
J. Nishii, T. Yamashita, and T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
-
(1988)
Appl. Phys. Lett.
, vol.53
, pp. 553-554
-
-
Nishii, J.1
Yamashita, T.2
Yamagishi, T.3
-
337
-
-
0001339351
-
Coherent infrared fiber image bundle
-
J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
-
(1991)
Appl. Phys. Lett.
, vol.59
, pp. 2639-2641
-
-
Nishii, J.1
Yamashita, T.2
Yamagishi, T.3
Tanaka, C.4
Sone, H.5
-
338
-
-
34247636972
-
Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation
-
M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
-
(1992)
Appl. Phys. Lett.
, vol.60
, pp. 1153-1154
-
-
Asobe, M.1
Suzuki, K.I.2
Kanamori, T.3
Kubodera, K.I.4
-
339
-
-
0027679163
-
Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre
-
M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
-
(1993)
Electron. Lett.
, vol.29
, pp. 1966-1968
-
-
Asobe, M.1
Itoh, H.2
Miyazawa, T.3
Kanamori, T.4
-
340
-
-
0001728109
-
Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching
-
M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
-
(1997)
Opt. Fiber Technol.
, vol.3
, pp. 142-148
-
-
Asobe, M.1
-
341
-
-
0027671553
-
Third-order nonlinear optical properties of As2S3 chalcogenide glass
-
H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
-
(1993)
J. Appl. Phys.
, vol.74
, pp. 3683-3687
-
-
Kobayashi, H.1
Kanbara, H.2
Koga, M.3
Kubodera, K.I.4
-
342
-
-
84901009037
-
Drawing robust infrared optical fibers from preforms produced by efficient multimaterial stacked coextrusion
-
G. Tao and A. F. Abouraddy, “Drawing robust infrared optical fibers from preforms produced by efficient multimaterial stacked coextrusion,” Proc. SPIE 8982, 89820F (2014).
-
(2014)
Proc. SPIE
, vol.8982
-
-
Tao, G.1
Abouraddy, A.F.2
-
343
-
-
0027107063
-
Recent advances in preparation of high-purity chalcogenide glasses in the USSR
-
M. Churbanov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
-
(1992)
J. Non-Cryst. Solids
, vol.140
, pp. 324-330
-
-
Churbanov, M.1
-
344
-
-
84881299031
-
3 chalcogenide glasses
-
3 chalcogenide glasses,” Phys. Chem. Glasses B 54, 27–34 (2013).
-
(2013)
Phys. Chem. Glasses B
, vol.54
, pp. 27-34
-
-
Thompson, D.1
Danto, S.2
Musgraves, J.3
Wachtel, P.4
Giroire, B.5
Richardson, K.6
-
345
-
-
22144443199
-
Rapid synthesis of chalcogenide glasses of Se–Te–Sb system by microwave irradiation
-
K. Sivakumaran and C. S. Nair, “Rapid synthesis of chalcogenide glasses of Se–Te–Sb system by microwave irradiation,” J. Phys. D 38, 2476 (2005).
-
(2005)
J. Phys. D
, vol.38
-
-
Sivakumaran, K.1
Nair, C.S.2
-
347
-
-
3142753137
-
Fabrication of high-purity chalcogenide glasses by chemical vapor deposition
-
T. Katsuyama, S. Satoh, and H. Matsumura, “Fabrication of high-purity chalcogenide glasses by chemical vapor deposition,” J. Appl. Phys. 59, 1446–1449 (1986).
-
(1986)
J. Appl. Phys.
, vol.59
, pp. 1446-1449
-
-
Katsuyama, T.1
Satoh, S.2
Matsumura, H.3
-
348
-
-
0021439249
-
Scattering losses in optic fiber materials. II. Numerical estimates
-
M. Lines, “Scattering losses in optic fiber materials. II. Numerical estimates,” J. Appl. Phys. 55, 4058–4063 (1984).
-
(1984)
J. Appl. Phys.
, vol.55
, pp. 4058-4063
-
-
Lines, M.1
-
349
-
-
0001845538
-
High-purity chalcogenide glasses as materials for fiber optics
-
M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
-
(1995)
J. Non-Cryst. Solids
, vol.184
, pp. 25-29
-
-
Churbanov, M.1
-
350
-
-
0035337562
-
Optical fibers based on As–S–Se glass system
-
M. Churbanov, V. Shiryaev, I. Scripachev, G. Snopatin, V. Gerasimenko, S. Smetanin, I. Fadin, and V. Plotnichenko, “Optical fibers based on As–S–Se glass system,” J. Non-Cryst. Solids 284, 146–152 (2001).
-
(2001)
J. Non-Cryst. Solids
, vol.284
, pp. 146-152
-
-
Churbanov, M.1
Shiryaev, V.2
Scripachev, I.3
Snopatin, G.4
Gerasimenko, V.5
Smetanin, S.6
Fadin, I.7
Plotnichenko, V.8
-
351
-
-
0347236493
-
High-purity glasses based on arsenic chalcogenides
-
M. Churbanov, I. Scripachev, G. Snopatin, V. Shiryaev, and V. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–350 (2001).
-
(2001)
J. Optoelectron. Adv. Mater.
, vol.3
, pp. 341-350
-
-
Churbanov, M.1
Scripachev, I.2
Snopatin, G.3
Shiryaev, V.4
Plotnichenko, V.5
-
352
-
-
0020150934
-
3 with optical absorption of 60 dB/km
-
3 with optical absorption of 60 dB/km,” Quantum Electron. 12, 932–933 (1982).
-
(1982)
Quantum Electron
, vol.12
, pp. 932-933
-
-
Vlasov, M.1
Devyatykh, G.2
Dianov, E.M.3
Plotnichenko, V.4
Skripachev, I.5
Sysoev, V.6
Churbanov, M.7
-
353
-
-
70849100377
-
5 glass
-
5 glass,” J. Non-Cryst. Solids 355, 2640–2646 (2009).
-
(2009)
J. Non-Cryst. Solids
, vol.355
, pp. 2640-2646
-
-
Shiryaev, V.1
Ketkova, L.2
Churbanov, M.3
Potapov, A.4
Troles, J.5
Houizot, P.6
Adam, J.-L.7
Sibirkin, A.8
-
354
-
-
71849092398
-
Preparation of optical fibers based on Ge–Sb–S glass system
-
V. Shiryaev, J. Troles, P. Houizot, L. Ketkova, M. Churbanov, J.-L. Adam, and A. Sibirkin, “Preparation of optical fibers based on Ge–Sb–S glass system,” Opt. Mater. 32, 362–367 (2009).
-
(2009)
Opt. Mater.
, vol.32
, pp. 362-367
-
-
Shiryaev, V.1
Troles, J.2
Houizot, P.3
Ketkova, L.4
Churbanov, M.5
Adam, J.-L.6
Sibirkin, A.7
-
355
-
-
84884355895
-
Trends and prospects for development of chalcogenide fibers for mid-infrared transmission
-
V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
-
(2013)
J. Non-Cryst. Solids
, vol.377
, pp. 225-230
-
-
Shiryaev, V.1
Churbanov, M.2
-
356
-
-
0024662708
-
Middle-infrared chalcogenide glass fibers with losses lower than 100 db km−1
-
E. Dianov, V. Plotnichenko, G. Devyatykh, M. Churbanov, and I. Scripachev, “Middle-infrared chalcogenide glass fibers with losses lower than 100 db km−1,” Infrared Phys. 29, 303–307 (1989).
-
(1989)
Infrared Phys
, vol.29
, pp. 303-307
-
-
Dianov, E.1
Plotnichenko, V.2
Devyatykh, G.3
Churbanov, M.4
Scripachev, I.5
-
357
-
-
34247476188
-
High-purity As-S-Se and As-Se-Te glasses and optical fibers
-
M. Churbanov, V. Shiryaev, A. Suchkov, A. Pushkin, V. Gerasimenko, R. Shaposhnikov, E. Dianov, V. Plotnichenko, V. Koltashev, and Y. N. Pyrkov, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43, 441–447 (2007).
-
(2007)
Inorg. Mater.
, vol.43
, pp. 441-447
-
-
Churbanov, M.1
Shiryaev, V.2
Suchkov, A.3
Pushkin, A.4
Gerasimenko, V.5
Shaposhnikov, R.6
Dianov, E.7
Plotnichenko, V.8
Koltashev, V.9
Pyrkov, Y.N.10
-
358
-
-
0024735871
-
Characteristics of tellurium-bromide-based glass for IR fibers optics
-
I. Chiaruttini, G. Fonteneau, X. Zhang, and J. Lucas, “Characteristics of tellurium-bromide-based glass for IR fibers optics,” J. Non-Cryst. Solids 111, 77–81 (1989).
-
(1989)
J. Non-Cryst. Solids
, vol.111
, pp. 77-81
-
-
Chiaruttini, I.1
Fonteneau, G.2
Zhang, X.3
Lucas, J.4
-
359
-
-
0027107085
-
Improvement of tellurium halide glasses for IR fiber optics
-
X. Zhang, H. Ma, G. Fonteneau, and J. Lucas, “Improvement of tellurium halide glasses for IR fiber optics,” J. Non-Cryst. Solids 140, 47–51 (1992).
-
(1992)
J. Non-Cryst. Solids
, vol.140
, pp. 47-51
-
-
Zhang, X.1
Ma, H.2
Fonteneau, G.3
Lucas, J.4
-
360
-
-
0001307534
-
Tellurium halide glass fibers: Preparation and applications
-
C. Blanchetiere, K. Le Foulgoc, H. Ma, X. Zhang, and J. Lucas, “Tellurium halide glass fibers: preparation and applications,” J. Non-Cryst. Solids 184, 200–203 (1995).
-
(1995)
J. Non-Cryst. Solids
, vol.184
, pp. 200-203
-
-
Blanchetiere, C.1
Le Foulgoc, K.2
Ma, H.3
Zhang, X.4
Lucas, J.5
-
361
-
-
0027643876
-
Low loss optical fibres of the tellurium halide-based glasses, the TeX glasses
-
X. Zhang, H. Ma, C. Blanchetiere, and J. Lucas, “Low loss optical fibres of the tellurium halide-based glasses, the TeX glasses,” J. Non-Cryst. Solids 161, 327–330 (1993).
-
(1993)
J. Non-Cryst. Solids
, vol.161
, pp. 327-330
-
-
Zhang, X.1
Ma, H.2
Blanchetiere, C.3
Lucas, J.4
-
362
-
-
0032296272
-
Tellurium halide optical fibers
-
L. Le Neindre, F. Smektala, K. Le Foulgoc, X. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99–103 (1998).
-
(1998)
J. Non-Cryst. Solids
, vol.242
, pp. 99-103
-
-
Le Neindre, L.1
Smektala, F.2
Le Foulgoc, K.3
Zhang, X.4
Lucas, J.5
-
363
-
-
0343627064
-
TeX-glass infrared optical fibers delivering medium power from a CO2 laser
-
F. Smektala, K. Le Foulgoc, L. Le Neindre, C. Blanchetiere, X. Zhang, and J. Lucas, “TeX-glass infrared optical fibers delivering medium power from a CO2 laser,” Opt. Mater. 13, 271–276 (1999).
-
(1999)
Opt. Mater.
, vol.13
, pp. 271-276
-
-
Smektala, F.1
Le Foulgoc, K.2
Le Neindre, L.3
Blanchetiere, C.4
Zhang, X.5
Lucas, J.6
-
364
-
-
0347506034
-
Applications of chalcogenide glass bulks and fibres
-
X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater 5, 1327–1333 (2003).
-
(2003)
J. Optoelectron. Adv. Mater
, vol.5
, pp. 1327-1333
-
-
Zhang, X.1
Ma, H.2
Lucas, J.3
-
365
-
-
84897808126
-
Chalcogenide optical fibers for mid-infrared sensing
-
B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, and V. Monbet, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
-
(2014)
Opt. Eng.
, vol.53
-
-
Bureau, B.1
Boussard, C.2
Cui, S.3
Chahal, R.4
Anne, M.L.5
Nazabal, V.6
Sire, O.7
Loréal, O.8
Lucas, P.9
Monbet, V.10
-
366
-
-
78751580434
-
4 based glasses optical fibers for far-infrared sensing
-
4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33, 660–663 (2011).
-
(2011)
Opt. Mater.
, vol.33
, pp. 660-663
-
-
Maurugeon, S.1
Bureau, B.2
Boussard-Plédel, C.3
Faber, A.4
Lucas, P.5
Zhang, X.6
Lucas, J.7
-
367
-
-
31144475045
-
Single-mode infrared fibers based on Te-As-Se glass system
-
V. S. Shiryaev, C. Boussard-Pledel, P. Houizot, T. Jouan, J. L. Adam, and J. Lucas, “Single-mode infrared fibers based on Te-As-Se glass system,” Mat. Sci. Eng. B 127, 138–143 (2006).
-
(2006)
Mat. Sci. Eng. B
, vol.127
, pp. 138-143
-
-
Shiryaev, V.S.1
Boussard-Pledel, C.2
Houizot, P.3
Jouan, T.4
Adam, J.L.5
Lucas, J.6
-
368
-
-
78649422616
-
Telluride glass step index fiber for the far infrared
-
S. Maurugeon, C. Boussard-Pledel, J. Troles, A. J. Faber, P. Lucas, X. H. Zhang, J. Lucas, and B. Bureau, “Telluride glass step index fiber for the far infrared,” J. Lightwave Technol. 28, 3358–3363 (2010).
-
(2010)
J. Lightwave Technol.
, vol.28
, pp. 3358-3363
-
-
Maurugeon, S.1
Boussard-Pledel, C.2
Troles, J.3
Faber, A.J.4
Lucas, P.5
Zhang, X.H.6
Lucas, J.7
Bureau, B.8
-
369
-
-
0342582551
-
Chalcogenide fibers enable delivery of mid-infrared laser radiation
-
L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Chalcogenide fibers enable delivery of mid-infrared laser radiation,” Laser Focus World 32, 143–150 (1996).
-
(1996)
Laser Focus World
, vol.32
, pp. 143-150
-
-
Busse, L.1
Moon, J.2
Sanghera, J.3
Aggarwal, I.4
-
370
-
-
0037261763
-
Effect of heating on the optical loss in the As-Se glass fiber
-
V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, and I. D. Aggarwal, “Effect of heating on the optical loss in the As-Se glass fiber,” J. Lightwave Technol. 21, 122–126 (2003).
-
(2003)
J. Lightwave Technol.
, vol.21
, pp. 122-126
-
-
Nguyen, V.Q.1
Sanghera, J.S.2
Pureza, P.C.3
Aggarwal, I.D.4
-
371
-
-
0031167268
-
Development of chalcogenide glass fiber optics at NRL
-
J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63–67 (1997).
-
(1997)
J. Non-Cryst. Solids
, vol.213
, pp. 63-67
-
-
Sanghera, J.S.1
Aggarwal, I.D.2
-
372
-
-
0028426340
-
30 glass-fibers
-
30 glass-fibers,” J. Lightwave Technol. 12, 737–741 (1994).
-
(1994)
J. Lightwave Technol.
, vol.12
, pp. 737-741
-
-
Sanghera, J.S.1
Nguyen, V.Q.2
Pureza, P.C.3
Kung, F.H.4
Miklos, R.5
Aggarwal, I.D.6
-
373
-
-
0030143370
-
40S(60-x)Sex glass fibers
-
40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
-
(1996)
J. Lightwave Technol.
, vol.14
, pp. 743-748
-
-
Sanghera, J.S.1
Nguyen, V.Q.2
Pureza, P.C.3
Miklos, R.E.4
Kung, F.H.5
Aggarwal, I.D.6
-
374
-
-
0032002177
-
Fabrication of single-mode chalcogenide optical fiber
-
R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, P. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16, 214–217 (1998).
-
(1998)
J. Lightwave Technol.
, vol.16
, pp. 214-217
-
-
Mossadegh, R.1
Sanghera, J.S.2
Schaafsma, D.3
Cole, B.J.4
Nguyen, V.Q.5
Miklos, P.E.6
Aggarwal, I.D.7
-
375
-
-
0042167607
-
Mechanical properties of chalcogenide glasses: A review
-
G. M. Camilo, “Mechanical properties of chalcogenide glasses: a review,” Proc. SPIE 4940, 222–229 (2003).
-
(2003)
Proc. SPIE
, vol.4940
, pp. 222-229
-
-
Camilo, G.M.1
-
376
-
-
0033720080
-
Low-loss infrared arsenic-chalcogenide glass optical fibers
-
G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, A. Pushkin, Y. N. Pyrkov, I. Skripachev, G. Snopatin, M. F. Churbanov, and V. Shiryaev, “Low-loss infrared arsenic-chalcogenide glass optical fibers,” Proc. SPIE 4083, 229–237 (2000).
-
(2000)
Proc. SPIE
, vol.4083
, pp. 229-237
-
-
Devyatykh, G.G.1
Dianov, E.M.2
Plotnichenko, V.G.3
Pushkin, A.4
Pyrkov, Y.N.5
Skripachev, I.6
Snopatin, G.7
Churbanov, M.F.8
Shiryaev, V.9
-
377
-
-
0019872995
-
Teflon FEP-clad fluoride glass fibre
-
S. Mitachi, S. Shibata, and T. Manabe, “Teflon FEP-clad fluoride glass fibre,” Electron. Lett. 17, 128–129 (1981).
-
(1981)
Electron. Lett.
, vol.17
, pp. 128-129
-
-
Mitachi, S.1
Shibata, S.2
Manabe, T.3
-
378
-
-
84907361239
-
Multimaterial fibers: A new concept in infrared fiber optics
-
G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” Proc. SPIE 9098, 90980V (2014).
-
(2014)
Proc. SPIE
, vol.9098
-
-
Tao, G.1
Abouraddy, A.F.2
-
379
-
-
65449190233
-
Influence of ageing conditions on the mechanical properties of Te-As-Se fibres
-
G. Delaizir, J. C. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibres,” J. Phys. D 42, 095405 (2009).
-
(2009)
J. Phys. D
, vol.42
-
-
Delaizir, G.1
Sangleboeuf, J.C.2
King, E.A.3
Gueguen, Y.4
Zhang, X.H.5
Boussard-Pledel, C.6
Bureau, B.7
Lucas, P.8
-
380
-
-
84982738089
-
-
retrieved April 1, 2015
-
http://spie.org/x110821.xml, retrieved April 1, 2015.
-
-
-
-
381
-
-
80755159141
-
Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires
-
J. J. Kaufman, G. M. Tao, S. Shabahang, D. S. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
-
(2011)
Nano Lett
, vol.11
, pp. 4768-4773
-
-
Kaufman, J.J.1
Tao, G.M.2
Shabahang, S.3
Deng, D.S.S.4
Fink, Y.5
Abouraddy, A.F.6
-
382
-
-
60749122116
-
Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization
-
J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
-
(2009)
Fiber Integr. Opt.
, vol.28
, pp. 11-26
-
-
Troles, J.1
Brilland, L.2
Smektala, F.3
Houizot, P.4
Désévédavy, F.5
Coulombier, Q.6
Traynor, N.7
Chartier, T.8
Nguyen, T.N.9
Adam, J.-L.10
-
383
-
-
84870378785
-
Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses
-
P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2, 1359–1366 (2012).
-
(2012)
Opt. Mater. Express
, vol.2
, pp. 1359-1366
-
-
Toupin, P.1
Brilland, L.2
Trolès, J.3
Adam, J.-L.4
-
384
-
-
84901830472
-
5 microstructured optical fiber with a large refractive index difference
-
5 microstructured optical fiber with a large refractive index difference,” Opt. Express 22, 13322–13329 (2014).
-
(2014)
Opt. Express
, vol.22
, pp. 13322-13329
-
-
Cheng, T.1
Kanou, Y.2
Deng, D.3
Xue, X.4
Matsumoto, M.5
Misumi, T.6
Suzuki, T.7
Ohishi, Y.8
-
385
-
-
2942729594
-
As-S and As-Se based photonic band gap fiber for IR laser transmission
-
L. Shaw, J. Sanghera, I. Aggarwal, and F. Hung, “As-S and As-Se based photonic band gap fiber for IR laser transmission,” Opt. Express 11, 3455–3460 (2003).
-
(2003)
Opt. Express
, vol.11
, pp. 3455-3460
-
-
Shaw, L.1
Sanghera, J.2
Aggarwal, I.3
Hung, F.4
-
386
-
-
84899670452
-
Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers
-
O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 2684-2687
-
-
Mouawad, O.1
Picot-Clémente, J.2
Amrani, F.3
Strutynski, C.4
Fatome, J.5
Kibler, B.6
Désévédavy, F.7
Gadret, G.8
Jules, J.C.9
Deng, D.10
Ohishi, Y.11
Smektala, F.12
-
387
-
-
84877106646
-
Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber
-
W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 9573-9583
-
-
Gao, W.1
El Amraoui, M.2
Liao, M.3
Kawashima, H.4
Duan, Z.5
Deng, D.6
Cheng, T.7
Suzuki, T.8
Messaddeq, Y.9
Ohishi, Y.10
-
388
-
-
0000119052
-
Omnidirectional reflection from a one-dimensional photonic crystal
-
J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
-
(1998)
Opt. Lett.
, vol.23
, pp. 1573-1575
-
-
Winn, J.N.1
Fink, Y.2
Fan, S.3
Joannopoulos, J.D.4
-
389
-
-
77955181493
-
Fabrication of n-type silicon optical fibers
-
B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-type silicon optical fibers,” IEEE Photon. Technol. Lett. 21, 1798–1800 (2009).
-
(2009)
IEEE Photon. Technol. Lett.
, vol.21
, pp. 1798-1800
-
-
Scott, B.L.1
Wang, K.2
Pickrell, G.3
-
390
-
-
84975551915
-
SiO2-clad fibers with selectively volatilized soft-glass cores
-
E. Snitzer and R. Tumminelli, “SiO2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett. 14, 757–759 (1989).
-
(1989)
Opt. Lett.
, vol.14
, pp. 757-759
-
-
Snitzer, E.1
Tumminelli, R.2
-
391
-
-
56149113105
-
Silicon optical fiber
-
J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. Rao, and M. Daw, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
-
(2008)
Opt. Express
, vol.16
, pp. 18675-18683
-
-
Ballato, J.1
Hawkins, T.2
Foy, P.3
Stolen, R.4
Kokuoz, B.5
Ellison, M.6
McMillen, C.7
Reppert, J.8
Rao, A.9
Daw, M.10
-
392
-
-
84875852824
-
Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors
-
J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2013).
-
Adv. Funct. Mater
, vol.23
, pp. 1647-1654
-
-
Sparks, J.R.1
He, R.2
Healy, N.3
Chaudhuri, S.4
Fitzgibbons, T.C.5
Peacock, A.C.6
Sazio, P.J.7
Badding, J.V.8
-
393
-
-
84934877132
-
Extreme electronic bandgap modification in laser-crystallized silicon optical fibres
-
N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
-
(2014)
Nat. Mater.
, vol.13
, pp. 1122-1127
-
-
Healy, N.1
Mailis, S.2
Bulgakova, N.M.3
Sazio, P.J.4
Day, T.D.5
Sparks, J.R.6
Cheng, H.Y.7
Badding, J.V.8
Peacock, A.C.9
-
394
-
-
0033311414
-
Guiding optical light in air using an all-dielectric structure
-
Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039 (1999).
-
(1999)
J. Lightwave Technol.
, vol.17
-
-
Fink, Y.1
Ripin, D.J.2
Fan, S.3
Chen, C.4
Joannopoulos, J.D.5
Thomas, E.L.6
-
395
-
-
2942744833
-
Hollow multilayer photonic bandgap fibers for NIR applications
-
K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 1510-1517
-
-
Kuriki, K.1
Shapira, O.2
Hart, S.3
Benoit, G.4
Kuriki, Y.5
Viens, J.6
Bayindir, M.7
Joannopoulos, J.8
Fink, Y.9
-
396
-
-
77954946029
-
Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns
-
Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18, 15697–15703 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 15697-15703
-
-
Ruff, Z.1
Shemuly, D.2
Peng, X.3
Shapira, O.4
Wang, Z.5
Fink, Y.6
-
397
-
-
84858976913
-
Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers
-
D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20, 6029–6035 (2012).
-
(2012)
Opt. Express
, vol.20
, pp. 6029-6035
-
-
Shemuly, D.1
Stolyarov, A.M.2
Ruff, Z.M.3
Wei, L.4
Fink, Y.5
Shapira, O.6
-
398
-
-
0000708186
-
Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers
-
S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
-
(2001)
Opt. Express
, vol.9
, pp. 748-779
-
-
Johnson, S.1
Ibanescu, M.2
Skorobogatiy, M.3
Weisberg, O.4
Engeness, T.5
Soljacic, M.6
Jacobs, S.7
Joannopoulos, J.8
Fink, Y.9
-
399
-
-
0038203171
-
Analysis of mode structure in hollow dielectric waveguide fibers
-
M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
-
(2003)
Phys. Rev. E
, vol.67
-
-
Ibanescu, M.1
Johnson, S.G.2
Soljačić, M.3
Joannopoulos, J.4
Fink, Y.5
Weisberg, O.6
Engeness, T.D.7
Jacobs, S.A.8
Skorobogatiy, M.9
-
400
-
-
18144379209
-
Complete modal decomposition for optical waveguides
-
O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94, 143902 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
-
-
Shapira, O.1
Abouraddy, A.F.2
Joannopoulos, J.D.3
Fink, Y.4
-
401
-
-
77953557975
-
Enabling coherent superpositions of iso-frequency optical states in multimode fibers
-
O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18, 12622–12629 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 12622-12629
-
-
Shapira, O.1
Abouraddy, A.F.2
Hu, Q.3
Shemuly, D.4
Joannopoulos, J.D.5
Fink, Y.6
-
402
-
-
84874093914
-
Asymmetric wave propagation in planar chiral fibers
-
D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira, “Asymmetric wave propagation in planar chiral fibers,” Opt. Express 21, 1465–1472 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 1465-1472
-
-
Shemuly, D.1
Ruff, Z.M.2
Stolyarov, A.M.3
Spektor, G.4
Johnson, S.G.5
Fink, Y.6
Shapira, O.7
-
403
-
-
0018008329
-
Theory of Bragg fiber
-
P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
-
(1978)
J. Opt. Soc. Am.
, vol.68
, pp. 1196-1201
-
-
Yeh, P.1
Yariv, A.2
Marom, E.3
-
404
-
-
84861503831
-
Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers
-
A. M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, and J. D. Joannopoulos, “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers,” Opt. Express 20, 12407–12415 (2012).
-
(2012)
Opt. Express
, vol.20
, pp. 12407-12415
-
-
Stolyarov, A.M.1
Gumennik, A.2
McDaniel, W.3
Shapira, O.4
Schell, B.5
Sorin, F.6
Kuriki, K.7
Benoit, G.8
Rose, A.9
Joannopoulos, J.D.10
-
405
-
-
79952434691
-
Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers
-
A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. 23, 1263–1267 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 1263-1267
-
-
Yildirim, A.1
Vural, M.2
Yaman, M.3
Bayindir, M.4
-
406
-
-
84869402731
-
Allin- fiber chemical sensing
-
A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “Allin- fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 6005-6009
-
-
Gumennik, A.1
Stolyarov, A.M.2
Schell, B.R.3
Hou, C.4
Lestoquoy, G.5
Sorin, F.6
McDaniel, W.7
Rose, A.8
Joannopoulos, J.D.9
Fink, Y.10
-
407
-
-
77957598363
-
Fiber field-effect device via in situ channel crystallization
-
S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22, 4162–4166 (2010).
-
(2010)
Adv. Mater.
, vol.22
, pp. 4162-4166
-
-
Danto, S.1
Sorin, F.2
Orf, N.D.3
Wang, Z.4
Speakman, S.A.5
Joannopoulos, J.D.6
Fink, Y.7
-
408
-
-
67650361627
-
Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber
-
F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
-
(2009)
Nano Lett
, vol.9
, pp. 2630-2635
-
-
Sorin, F.1
Shapira, O.2
Abouraddy, A.F.3
Spencer, M.4
Orf, N.D.5
Joannopoulos, J.D.6
Fink, Y.7
-
409
-
-
36549013123
-
Multimaterial photodetecting fibers: A geometric and structural study
-
F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
-
(2007)
Adv. Mater.
, vol.19
, pp. 3872-3877
-
-
Sorin, F.1
Abouraddy, A.F.2
Orf, N.3
Shapira, O.4
Viens, J.5
Arnold, J.6
Joannopoulos, J.D.7
Fink, Y.8
-
410
-
-
33745632950
-
Thermal-sensing fiber devices by multimaterial codrawing
-
M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
-
(2006)
Adv. Mater.
, vol.18
, pp. 845-849
-
-
Bayindir, M.1
Abouraddy, A.F.2
Arnold, J.3
Joannopoulos, J.D.4
Fink, Y.5
-
411
-
-
79551594103
-
Fibres get functional
-
D. Graham-Rowe, “Fibres get functional,” Nat. Photonics 5, 66–67 (2011).
-
(2011)
Nat. Photonics
, vol.5
, pp. 66-67
-
-
Graham-Rowe, D.1
-
412
-
-
77449103380
-
Silicon photonics: A review of recent literature
-
R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2, 1–6 (2010).
-
(2010)
Silicon
, vol.2
, pp. 1-6
-
-
Soref, R.1
-
413
-
-
84884283410
-
Semiconductor optical fibres: Progress and opportunities
-
A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photon. Rev. 8, 53–72 (2014).
-
(2014)
Laser Photon. Rev.
, vol.8
, pp. 53-72
-
-
Peacock, A.C.1
Sparks, J.R.2
Healy, N.3
-
414
-
-
84881337547
-
Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities
-
A. Gumennik, L. Wei, G. Lestoquoy, A. M. Stolyarov, X. Jia, P. H. Rekemeyer, M. J. Smith, X. Liang, B. J.-B. Grena, and S. G. Johnson, “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nat. Commun. 4, 2216 (2013).
-
(2013)
Nat. Commun.
, vol.4
-
-
Gumennik, A.1
Wei, L.2
Lestoquoy, G.3
Stolyarov, A.M.4
Jia, X.5
Rekemeyer, P.H.6
Smith, M.J.7
Liang, X.8
Grena, B.J.9
Johnson, S.G.10
-
415
-
-
84874993360
-
Silicon p-i-n junction fibers
-
R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Silicon p-i-n junction fibers,” Adv. Mater. 25, 1461–1467 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 1461-1467
-
-
He, R.1
Day, T.D.2
Krishnamurthi, M.3
Sparks, J.R.4
Sazio, P.J.5
Gopalan, V.6
Badding, J.V.7
-
416
-
-
84884285385
-
Rethinking optical fiber: New demands, old glasses
-
J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
-
(2013)
J. Am. Ceram. Soc.
, vol.96
, pp. 2675-2692
-
-
Ballato, J.1
Dragic, P.2
-
417
-
-
84870364151
-
On loss in silicon core optical fibers
-
S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fibers,” Opt. Mater. Express 2, 1511–1519 (2012).
-
(2012)
Opt. Mater. Express
, vol.2
, pp. 1511-1519
-
-
Morris, S.1
Hawkins, T.2
Foy, P.3
Hudson, J.4
Zhu, L.5
Stolen, R.6
Rice, R.7
Ballato, J.8
-
418
-
-
77950872927
-
Tapered silicon optical fibers
-
N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express 18, 7596–7601 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 7596-7601
-
-
Healy, N.1
Sparks, J.R.2
Sazio, P.J.A.3
Badding, J.V.4
Peacock, A.C.5
-
419
-
-
84866402334
-
Cladding glass development for semiconductor core optical fibers
-
S. Morris, T. Hawkins, P. Foy, J. Ballato, S. W. Martin, and R. Rice, “Cladding glass development for semiconductor core optical fibers,” Int. J. Appl. Glass Sci. 3, 144–153 (2012).
-
(2012)
Int. J. Appl. Glass Sci.
, vol.3
, pp. 144-153
-
-
Morris, S.1
Hawkins, T.2
Foy, P.3
Ballato, J.4
Martin, S.W.5
Rice, R.6
-
420
-
-
0033645719
-
A review of IR transmitting, hollow waveguides
-
J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
-
(2000)
Fiber Integr. Opt.
, vol.19
, pp. 211-227
-
-
Harrington, J.A.1
-
422
-
-
0011281821
-
Thermal effects in a hollow waveguide beam launch for CO2 laser power delivery
-
D. N. Su, S. Somkuarnpanit, D. R. Hall, and J. D. C. Jones, “Thermal effects in a hollow waveguide beam launch for CO2 laser power delivery,” Appl. Opt. 35, 4787–4789 (1996).
-
(1996)
Appl. Opt.
, vol.35
, pp. 4787-4789
-
-
Su, D.N.1
Somkuarnpanit, S.2
Hall, D.R.3
Jones, J.D.C.4
-
423
-
-
24944471868
-
Singlemode mid-IR guidance in a hollow-core photonic crystal fiber
-
J. D. Shephard, W. N. MacPherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Singlemode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13, 7139–7144 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 7139-7144
-
-
Shephard, J.D.1
Macpherson, W.N.2
Maier, R.R.J.3
Jones, J.D.C.4
Hand, D.P.5
Mohebbi, M.6
George, A.K.7
Roberts, P.J.8
Knight, J.C.9
-
424
-
-
84907689035
-
Nested antiresonant nodeless hollow core fiber
-
F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
-
(2014)
Opt. Express
, vol.22
, pp. 23807-23828
-
-
Poletti, F.1
-
425
-
-
84921814121
-
Anti-resonant hexagram hollow core fibers
-
J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015). 426.
-
(2015)
Opt. Express
, vol.23
, pp. 1289-1299
-
-
Hayes, J.R.1
Poletti, F.2
Abokhamis, M.S.3
Wheeler, N.V.4
Baddela, N.K.5
Richardson, D.J.6
-
426
-
-
34248681136
-
Antiresonant reflecting optical waveguides in SiO2=-i multilayer structures
-
M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2=-i multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
-
(1986)
Appl. Phys. Lett.
, vol.49
, pp. 13-15
-
-
Duguay, M.1
Kokubun, Y.2
Koch, T.3
Pfeiffer, L.4
-
427
-
-
0030141601
-
Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides
-
I. Garcés, F. Villuendas, J. A. Valles, C. Domínguez, and M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
-
(1996)
J. Lightwave Technol.
, vol.14
, pp. 798-805
-
-
Garcés, I.1
Villuendas, F.2
Valles, J.A.3
Domínguez, C.4
Moreno, M.5
-
428
-
-
0037106748
-
Antiresonant reflecting photonic crystal optical waveguides
-
N. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
-
(2002)
Opt. Lett.
, vol.27
, pp. 1592-1594
-
-
Litchinitser, N.1
Abeeluck, A.2
Headley, C.3
Eggleton, B.4
-
429
-
-
4644245153
-
Integrated ARROW waveguides with hollow cores
-
D. Yin, H. Schmidt, J. Barber, and A. Hawkins, “Integrated ARROW waveguides with hollow cores,” Opt. Express 12, 2710–2715 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 2710-2715
-
-
Yin, D.1
Schmidt, H.2
Barber, J.3
Hawkins, A.4
-
430
-
-
57349099505
-
Improving solid to hollow core transmission for integrated ARROW waveguides
-
E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16, 20981–20986 (2008).
-
(2008)
Opt. Express
, vol.16
, pp. 20981-20986
-
-
Lunt, E.J.1
Measor, P.2
Phillips, B.S.3
Kühn, S.4
Schmidt, H.5
Hawkins, A.R.6
-
432
-
-
0042328007
-
Chalcogenide glass-based rib ARROW waveguide
-
V. Balan, C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. Alonso, and M. Garriga, “Chalcogenide glass-based rib ARROW waveguide,” J. Non-Cryst. Solids 326, 455–459 (2003).
-
(2003)
J. Non-Cryst. Solids
, vol.326
, pp. 455-459
-
-
Balan, V.1
Vigreux, C.2
Pradel, A.3
Llobera, A.4
Dominguez, C.5
Alonso, M.6
Garriga, M.7
-
433
-
-
27744494849
-
Waveguide loss optimization in hollow-core ARROW waveguides
-
D. Yin, J. Barber, A. Hawkins, and H. Schmidt, “Waveguide loss optimization in hollow-core ARROW waveguides,” Opt. Express 13, 9331–9336 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 9331-9336
-
-
Yin, D.1
Barber, J.2
Hawkins, A.3
Schmidt, H.4
-
434
-
-
84877126956
-
Light transmission in negative curvature hollow core fiber in extremely high material loss region
-
A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 9514-9519
-
-
Kolyadin, A.N.1
Kosolapov, A.F.2
Pryamikov, A.D.3
Biriukov, A.S.4
Plotnichenko, V.G.5
Dianov, E.M.6
-
435
-
-
84875123741
-
Antiresonant reflecting microstructured optical fibers for the mid-infrared
-
T. Lewi, J. Ofek, and A. Katzir, “Antiresonant reflecting microstructured optical fibers for the mid-infrared,” Appl. Phys. Lett. 102, 101104 (2013).
-
(2013)
Appl. Phys. Lett.
, vol.102
-
-
Lewi, T.1
Ofek, J.2
Katzir, A.3
-
436
-
-
2942724308
-
Resonances in microstructured optical waveguides
-
N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
-
(2003)
Opt. Express
, vol.11
, pp. 1243-1251
-
-
Litchinitser, N.M.1
Dunn, S.C.2
Usner, B.3
Eggleton, B.J.4
White, T.P.5
McPhedran, R.C.6
De Sterke, C.M.7
-
437
-
-
10444257276
-
Long wavelength anti-resonant guidance in high index inclusion microstructured fibers
-
P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 5424-5433
-
-
Steinvurzel, P.1
Kuhlmey, B.2
White, T.3
Steel, M.4
De Sterke, C.5
Eggleton, B.6
-
438
-
-
42149150451
-
Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres
-
A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16, 5642–5648 (2008).
-
(2008)
Opt. Express
, vol.16
, pp. 5642-5648
-
-
Argyros, A.1
Leon-Saval, S.G.2
Pla, J.3
Docherty, A.4
-
439
-
-
55349140416
-
Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model
-
K. J. Rowland, S. Afshar, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
-
Opt. Express
, vol.16
, pp. 17935-17951
-
-
Rowland, K.J.1
Afshar, S.2
Monro, T.M.3
-
440
-
-
78751516332
-
Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm
-
A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19, 1441–1448 (2011).
-
(2011)
Opt. Express
, vol.19
, pp. 1441-1448
-
-
Pryamikov, A.D.1
Biriukov, A.S.2
Kosolapov, A.F.3
Plotnichenko, V.G.4
Semjonov, S.L.5
Dianov, E.M.6
-
441
-
-
79957606110
-
High index contrast semiconductor ARROW and hybrid ARROW fibers
-
N. Healy, J. Sparks, R. He, P. Sazio, J. Badding, and A. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express 19, 10979–10985 (2011).
-
(2011)
Opt. Express
, vol.19
, pp. 10979-10985
-
-
Healy, N.1
Sparks, J.2
He, R.3
Sazio, P.4
Badding, J.5
Peacock, A.6
-
442
-
-
39349101038
-
Terahertz air-core microstructure fiber
-
J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
-
(2008)
Appl. Phys. Lett.
, vol.92
-
-
Lu, J.-Y.1
Yu, C.-P.2
Chang, H.-C.3
Chen, H.-W.4
Li, Y.-T.5
Pan, C.-L.6
Sun, C.-K.7
-
443
-
-
73549100642
-
Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding
-
C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
-
(2010)
Opt. Express
, vol.18
, pp. 309-322
-
-
Lai, C.-H.1
You, B.2
Lu, J.-Y.3
Liu, T.-A.4
Peng, J.-L.5
Sun, C.-K.6
Chang, H.-C.7
-
444
-
-
84884582279
-
Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications
-
P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 22742-22753
-
-
Jaworski, P.1
Yu, F.2
Maier, R.R.3
Wadsworth, W.J.4
Knight, J.C.5
Shephard, J.D.6
Hand, D.P.7
-
445
-
-
84906078147
-
Double antiresonant hollow core fiber—guidance in the deep ultraviolet by modified tunneling leaky modes
-
A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber—guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22, 19131–19140 (2014).
-
(2014)
Opt. Express
, vol.22
, pp. 19131-19140
-
-
Hartung, A.1
Kobelke, J.2
Schwuchow, A.3
Wondraczek, K.4
Bierlich, J.5
Popp, J.6
Frosch, T.7
Schmidt, M.A.8
-
446
-
-
84861128123
-
Low loss silica hollow core fibers for 3–4 μm spectral region
-
F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μm spectral region,” Opt. Express 20, 11153–11158 (2012).
-
(2012)
Opt. Express
, vol.20
, pp. 11153-11158
-
-
Yu, F.1
Wadsworth, W.J.2
Knight, J.C.3
-
447
-
-
84898981328
-
Hollow antiresonant fibers with low bending loss
-
W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
-
(2014)
Opt. Express
, vol.22
, pp. 10091-10096
-
-
Belardi, W.1
Knight, J.C.2
-
448
-
-
84897991247
-
Hollow antiresonant fibers with reduced attenuation
-
W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 1853-1856
-
-
Belardi, W.1
Knight, J.C.2
-
449
-
-
82955181326
-
2-laser power delivery through chalcogenide- glass fiber with negative-curvature hollow core
-
2-laser power delivery through chalcogenide- glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
-
(2011)
Opt. Express
, vol.19
, pp. 25723-25728
-
-
Kosolapov, A.F.1
Pryamikov, A.D.2
Biriukov, A.S.3
Shiryaev, V.S.4
Astapovich, M.S.5
Snopatin, G.E.6
Plotnichenko, V.G.7
Churbanov, M.F.8
Dianov, E.M.9
-
451
-
-
0001512399
-
Fabrication of germanium- coated nickel hollow waveguides for infrared transmission
-
M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium- coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
-
(1983)
Appl. Phys. Lett.
, vol.43
, pp. 430-432
-
-
Miyagi, M.1
Hongo, A.2
Aizawa, Y.3
Kawakami, S.4
-
452
-
-
0027553843
-
Performance of a dielectric-coated monolithic hollow metallic waveguide
-
P. Bhardwaj, O. Gregory, C. Morrow, G. Gu, and K. Burbank, “Performance of a dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
-
(1993)
Mater. Lett.
, vol.16
, pp. 150-156
-
-
Bhardwaj, P.1
Gregory, O.2
Morrow, C.3
Gu, G.4
Burbank, K.5
-
453
-
-
0001711598
-
2 laser delivery by ZnS-coated Ag hollow waveguides
-
2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
-
(1993)
Appl. Opt.
, vol.32
, pp. 6598-6601
-
-
Matsuura, Y.1
Miyagi, M.2
-
454
-
-
84975624018
-
Transmission properties of rectangular hollow waveguides for CO2 laser light
-
H. Machida, Y. Matsuura, H. Ishikawa, and M. Miyagi, “Transmission properties of rectangular hollow waveguides for CO2 laser light,” Appl. Opt. 31, 7617–7622 (1992).
-
(1992)
Appl. Opt.
, vol.31
, pp. 7617-7622
-
-
Machida, H.1
Matsuura, Y.2
Ishikawa, H.3
Miyagi, M.4
-
455
-
-
0004960518
-
Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides
-
S. J. Saggese, J. A. Harrington, and G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27–29 (1991).
-
(1991)
Opt. Lett.
, vol.16
, pp. 27-29
-
-
Saggese, S.J.1
Harrington, J.A.2
Sigel, G.H.3
-
456
-
-
84975578129
-
Bending losses of incoherent light in circular hollow waveguides
-
M. Saito, Y. Matsuura, M. Kawamura, and M. Miyagi, “Bending losses of incoherent light in circular hollow waveguides,” J. Opt. Soc. Am. A 7, 2063–2068 (1990).
-
(1990)
J. Opt. Soc. Am. A
, vol.7
, pp. 2063-2068
-
-
Saito, M.1
Matsuura, Y.2
Kawamura, M.3
Miyagi, M.4
-
457
-
-
84855669744
-
AgIcoated silver-clad stainless steel hollow waveguides for infrared lightwave transmission and their applications
-
A. Hongo, S. Sato, A. Hattori, K. Iwai, T. Hiroyuki, and M. Miyagi, “AgIcoated silver-clad stainless steel hollow waveguides for infrared lightwave transmission and their applications,” Appl. Opt. 51, 1–7 (2012).
-
(2012)
Appl. Opt.
, vol.51
, pp. 1-7
-
-
Hongo, A.1
Sato, S.2
Hattori, A.3
Iwai, K.4
Hiroyuki, T.5
Miyagi, M.6
-
458
-
-
0032658185
-
Hollow waveguides for gas sensing and near-IR applications
-
D. J. Haan and J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” Proc. SPIE 3596, 43–49 (1999).
-
(1999)
Proc. SPIE
, vol.3596
, pp. 43-49
-
-
Haan, D.J.1
Harrington, J.A.2
-
459
-
-
0001890632
-
Polycrystalline fiber optical-waveguides for infrared transmission
-
D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical-waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
-
(1978)
Appl. Phys. Lett.
, vol.33
, pp. 28-29
-
-
Pinnow, D.A.1
Gentile, A.L.2
Standlee, A.G.3
Timper, A.J.4
Hobrock, L.M.5
-
460
-
-
2342614232
-
Silver halide photonic crystal fibers for the middle infrared
-
E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, “Silver halide photonic crystal fibers for the middle infrared,” Appl. Opt. 43, 2236–2241 (2004).
-
(2004)
Appl. Opt.
, vol.43
, pp. 2236-2241
-
-
Rave, E.1
Ephrat, P.2
Goldberg, M.3
Kedmi, E.4
Katzir, A.5
-
461
-
-
84975609741
-
KRS-5 optical fibers capable of transmitting high-power CO2 laser beam
-
S. Sakuragi, T. Morikawa, J. Shimada, M. Saito, Y. Kubo, K. Imagawa, and H. Kotani, “KRS-5 optical fibers capable of transmitting high-power CO2 laser beam,” Opt. Lett. 6, 629–631 (1981).
-
(1981)
Opt. Lett.
, vol.6
, pp. 629-631
-
-
Sakuragi, S.1
Morikawa, T.2
Shimada, J.3
Saito, M.4
Kubo, Y.5
Imagawa, K.6
Kotani, H.7
-
462
-
-
67649946012
-
Silver halide single mode fibers for broadband middle infrared stellar interferometry
-
T. Lewi, A. Tsun, A. Katzir, J. Kaster, and F. Fuchs, “Silver halide single mode fibers for broadband middle infrared stellar interferometry,” Appl. Phys. Lett. 94, 261105 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.94
-
-
Lewi, T.1
Tsun, A.2
Katzir, A.3
Kaster, J.4
Fuchs, F.5
-
463
-
-
84937037868
-
Midinfrared fiber optics for 1–18 μm range
-
V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Midinfrared fiber optics for 1–18 μm range,” Opt. Photon. 9, 35–39 (2014).
-
(2014)
Opt. Photon.
, vol.9
, pp. 35-39
-
-
Artyushenko, V.1
Bocharnikov, A.2
Sakharova, T.3
Usenov, I.4
-
464
-
-
84878555482
-
3-silica ‘nano-spike step-index waveguide,”
-
3-silica ‘nano-spike’ step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 10969-10977
-
-
Granzow, N.1
Schmidt, M.2
Chang, W.3
Wang, L.4
Coulombier, Q.5
Troles, J.6
Toupin, P.7
Hartl, I.8
Lee, K.9
Fermann, M.10
-
465
-
-
84906871836
-
3-silica double-nanospike waveguide for mid-infrared supercontinuum generation
-
3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 5216-5219
-
-
Xie, S.R.1
Tani, F.2
Travers, J.C.3
Uebel, P.4
Caillaud, C.5
Troles, J.6
Schmidt, M.A.7
Russell, P.S.J.8
-
466
-
-
67650047838
-
All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers
-
M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34, 1946–1948 (2009).
-
(2009)
Opt. Lett.
, vol.34
, pp. 1946-1948
-
-
Schmidt, M.A.1
Granzow, N.2
Da, N.3
Peng, M.4
Wondraczek, L.5
Russell, P.J.6
-
467
-
-
79959978219
-
Bandgap guidance in hybrid chalcogenide–silica photonic crystal fibers
-
N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Bandgap guidance in hybrid chalcogenide–silica photonic crystal fibers,” Opt. Lett. 36, 2432–2434 (2011).
-
(2011)
Opt. Lett.
, vol.36
, pp. 2432-2434
-
-
Granzow, N.1
Uebel, P.2
Schmidt, M.A.3
Tverjanovich, A.S.4
Wondraczek, L.5
Russell, P.S.J.6
-
469
-
-
84924178696
-
Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm
-
T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm,” Opt. Express 23, 4125–4134 (2015).
-
(2015)
Opt. Express
, vol.23
, pp. 4125-4134
-
-
Cheng, T.1
Zhang, L.2
Xue, X.3
Deng, D.4
Suzuki, T.5
Ohishi, Y.6
-
470
-
-
84929493526
-
3+- doped fiber laser
-
3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).
-
(2015)
Proc. SPIE
, vol.9342
-
-
Kneis, C.1
Donelan, B.2
Berrou, A.3
Manek-Hönninger, I.4
Cadier, B.5
Robin, T.6
Poulain, M.7
Joulain, F.8
Eichhorn, M.9
Kieleck, C.10
-
471
-
-
84982739805
-
Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation
-
(to be published)
-
B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. (to be published).
-
J. Am. Ceram. Soc
-
-
Zhang, B.1
Guo, W.2
Yu, Y.3
Zhai, C.4
Qi, S.5
Yang, A.6
Li, L.7
Yang, Z.8
Wang, R.9
Tang, D.10
Tao, G.11
Luther-Davies, B.12
-
472
-
-
84957558548
-
Recent progress in chalcogenide fiber technology at NRL
-
(to be published)
-
W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).
-
J. Non-Cryst. Solids
-
-
Kim, W.1
Nguyen, V.2
Shaw, L.3
Busse, L.4
Florea, C.5
Gibson, D.6
Gattass, R.7
Bayya, S.8
Kung, F.9
Chin, G.10
-
474
-
-
0037075570
-
Optical frequency metrology
-
T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
-
(2002)
Nature
, vol.416
, pp. 233-237
-
-
Udem, T.1
Holzwarth, R.2
Hansch, T.W.3
-
475
-
-
84885783352
-
Coherent Raman spectro-imaging with laser frequency combs
-
T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
-
(2013)
Nature
, vol.502
, pp. 355-358
-
-
Ideguchi, T.1
Holzner, S.2
Bernhardt, B.3
Guelachvili, G.4
Picque, N.5
Hansch, T.W.6
-
476
-
-
0842321987
-
Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared
-
B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
-
(2004)
Opt. Lett.
, vol.29
, pp. 250-252
-
-
Washburn, B.R.1
Diddams, S.A.2
Newbury, N.R.3
Nicholson, J.W.4
Yan, M.F.5
Jrgensen, C.G.6
-
477
-
-
84897396853
-
Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires
-
J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
-
(2014)
Opt. Lett.
, vol.39
, pp. 482-485
-
-
Beugnot, J.-C.1
Ahmad, R.2
Rochette, M.3
Laude, V.4
Maillotte, H.5
Sylvestre, T.6
-
478
-
-
0034317530
-
Chemically tapered silver halide fibers: An approach for increasing the sensitivity of mid-infrared evanescent wave sensors
-
M. Karlowatz, M. Kraft, E. Eitenberger, B. Mizaikoff, and A. Katzir, “Chemically tapered silver halide fibers: an approach for increasing the sensitivity of mid-infrared evanescent wave sensors,” Appl. Spectrosc. 54, 1629–1633 (2000).
-
(2000)
Appl. Spectrosc.
, vol.54
, pp. 1629-1633
-
-
Karlowatz, M.1
Kraft, M.2
Eitenberger, E.3
Mizaikoff, B.4
Katzir, A.5
-
479
-
-
0031362955
-
Fused taper infrared optical fiber couplers in chalcogenide glass
-
D. T. Schaafsma, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Fused taper infrared optical fiber couplers in chalcogenide glass,” J. Lightwave Technol. 15, 2242–2245 (1997).
-
(1997)
J. Lightwave Technol.
, vol.15
, pp. 2242-2245
-
-
Schaafsma, D.T.1
Moon, J.A.2
Sanghera, J.S.3
Aggarwal, I.D.4
-
480
-
-
65249162233
-
Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper
-
Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 5852-5860
-
-
Chen, Z.1
Taylor, A.J.2
Efimov, A.3
-
481
-
-
84879625499
-
Terabit-scale orbital angular momentum mode division multiplexing in fibers
-
N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
-
(2013)
Science
, vol.340
, pp. 1545
-
-
Bozinovic, N.1
Yue, Y.2
Ren, Y.3
Tur, M.4
Kristensen, P.5
Huang, H.6
Willner, A.E.7
Ramachandran, S.8
|