-
1
-
-
80053018115
-
Efficient and principled method for detecting communities in networks
-
Sept.
-
B. Ball, B. Karrer, and M. Newman. Efficient and principled method for detecting communities in networks. Physical Review E, 84(3), Sept. 2011.
-
(2011)
Physical Review E
, vol.84
, Issue.3
-
-
Ball, B.1
Karrer, B.2
Newman, M.3
-
4
-
-
8644267631
-
GaP: A factor model for discrete data
-
J. Canny. GaP: A factor model for discrete data. In ACM SIGIR, 2004.
-
(2004)
ACM SIGIR
-
-
Canny, J.1
-
5
-
-
67650927380
-
Bayesian inference for nonnegative matrix factorisation models
-
May 2009
-
A. T. Cemgil. Bayesian inference for nonnegative matrix factorisation models. Computational Intelligence and Neuroscience, 2009, May 2009.
-
(2009)
Computational Intelligence and Neuroscience
-
-
Cemgil, A.T.1
-
7
-
-
84887571737
-
The Yahoo! music dataset and KDD-cup'11
-
G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The Yahoo! music dataset and KDD-cup'11. Journal of Machine Learning Research, 18:8-18, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.18
, pp. 8-18
-
-
Dror, G.1
Koenigstein, N.2
Koren, Y.3
Weimer, M.4
-
9
-
-
0004012196
-
-
Chapman & Hall, London
-
A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman & Hall, London, 1995.
-
(1995)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.2
Stern, H.3
Rubin, D.4
-
10
-
-
25444484077
-
Posterior predictive assessment of model fitness via realized discrepancies
-
A. Gelman, X. Meng, and H. Stern. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6:733-807, 1996.
-
(1996)
Statistica Sinica
, vol.6
, pp. 733-807
-
-
Gelman, A.1
Meng, X.2
Stern, H.3
-
11
-
-
84899003086
-
Propagation algorithms for variational Bayesian learning
-
Z. Ghahramani and M. Beal. Propagation algorithms for variational Bayesian learning. In NIPS, pages 507-513, 2001.
-
(2001)
NIPS
, pp. 507-513
-
-
Ghahramani, Z.1
Beal, M.2
-
12
-
-
84919930449
-
Bayesian nonparametric Poisson factorization for recommendation systems
-
P. Gopalan, F. J. Ruiz, R. Ranganath, and D. M. Blei. Bayesian nonparametric Poisson factorization for recommendation systems. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, pages 275-283, 2014.
-
(2014)
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics
, pp. 275-283
-
-
Gopalan, P.1
Ruiz, F.J.2
Ranganath, R.3
Blei, D.M.4
-
13
-
-
84883369138
-
Efficient discovery of overlapping communities in massive networks
-
P. K. Gopalan and D. M. Blei. Efficient discovery of overlapping communities in massive networks. Proceedings of the National Academy of Sciences, 110(36):14534-14539, 2013.
-
(2013)
Proceedings of the National Academy of Sciences
, vol.110
, Issue.36
, pp. 14534-14539
-
-
Gopalan, P.K.1
Blei, D.M.2
-
15
-
-
84867611174
-
Poisson-uniform nonnegative matrix factorization
-
M. Hoffman. Poisson-uniform nonnegative matrix factorization. In ICASSP, 2012.
-
(2012)
ICASSP
-
-
Hoffman, M.1
-
16
-
-
84878919168
-
Stochastic variational inference
-
M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14(1303-1347), 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.1
Blei, D.2
Wang, C.3
Paisley, J.4
-
17
-
-
67049164166
-
Collaborative filtering for implicit feedback datasets
-
IEEE
-
Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on, pages 263-272. IEEE, 2008.
-
(2008)
Data Mining, 2008. ICDM'08. Eighth IEEE International Conference On
, pp. 263-272
-
-
Hu, Y.1
Koren, Y.2
Volinsky, C.3
-
18
-
-
84940981793
-
Admixture of Poisson MRFs: A topic model with word dependencies
-
D. Inouye, P. Ravikumar, and I. Dhillon. Admixture of Poisson MRFs: A topic model with word dependencies. In ICML, pages 683-691, 2014.
-
(2014)
ICML
, pp. 683-691
-
-
Inouye, D.1
Ravikumar, P.2
Dhillon, I.3
-
19
-
-
79957601640
-
Mendeleys reply to the datatel challenge
-
J. Jack, Krisanwd Hammerton, D. Harvey, J. J. Hoyt, J. Reichelt, and V. Henning. Mendeleys reply to the datatel challenge. Procedia Computer Science, 1(2):1-3, 2010.
-
(2010)
Procedia Computer Science
, vol.1
, Issue.2
, pp. 1-3
-
-
Jack, J.1
Hammerton, K.2
Harvey, D.3
Hoyt, J.J.4
Reichelt, J.5
Henning, V.6
-
21
-
-
0033225865
-
Introduction to variational methods for graphical models
-
M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. Introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
22
-
-
65449121157
-
Factorization meets the neighborhood: A multifaceted collaborative filtering model
-
ACM
-
Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In ACM SIGKDD, pages 426-434. ACM, 2008.
-
(2008)
ACM SIGKDD
, pp. 426-434
-
-
Koren, Y.1
-
23
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, 2009.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
24
-
-
85042632297
-
Graphchi: Large-scale graph computation on just a PC
-
A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation on just a PC. In OSDI, volume 12, pages 31-46, 2012.
-
(2012)
OSDI
, vol.12
, pp. 31-46
-
-
Kyrola, A.1
Blelloch, G.E.2
Guestrin, C.3
-
25
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
October
-
D. Lee and H. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755):788-791, October 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.1
Seung, H.2
-
26
-
-
80052106490
-
Probabilistic factor models for web site recommendation
-
ACM Press
-
H. Ma, C. Liu, I. King, and M. R. Lyu. Probabilistic factor models for web site recommendation. In ACM SIGIR, pages 265-274. ACM Press, 2011.
-
(2011)
ACM SIGIR
, pp. 265-274
-
-
Ma, H.1
Liu, C.2
King, I.3
Lyu, M.R.4
-
27
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
J. Mairal, J. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11:19-60, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, J.2
Ponce, J.3
Sapiro, G.4
-
29
-
-
84887582619
-
One-class collaborative filtering with random graphs
-
U. Paquet and N. Koenigstein. One-class collaborative filtering with random graphs. In WWW, 2013.
-
(2013)
WWW
-
-
Paquet, U.1
Koenigstein, N.2
-
30
-
-
78650134987
-
BPR: Bayesian personalized ranking from implicit feedback
-
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. In UAI, pages 452-461, 2009.
-
(2009)
UAI
, pp. 452-461
-
-
Rendle, S.1
Freudenthaler, C.2
Gantner, Z.3
Schmidt-Thieme, L.4
-
31
-
-
0000439370
-
Bayesianly justifiable and relevant frequency calculations for the applied statistician
-
D. Rubin. Bayesianly justifiable and relevant frequency calculations for the applied statistician. The Annals of Statistics, 12(4):1151-1172, 1984.
-
(1984)
The Annals of Statistics
, vol.12
, Issue.4
, pp. 1151-1172
-
-
Rubin, D.1
-
32
-
-
56449131205
-
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
-
ACM
-
R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In ICML, pages 880-887. ACM, 2008.
-
(2008)
ICML
, pp. 880-887
-
-
Salakhutdinov, R.1
Mnih, A.2
-
34
-
-
84867348357
-
Climf: Learning to maximize reciprocal rank with collaborative less-is-more filtering
-
ACM
-
Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic. Climf: learning to maximize reciprocal rank with collaborative less-is-more filtering. In Proceedings of the sixth ACM conference on Recommender systems, pages 139-146. ACM, 2012.
-
(2012)
Proceedings of the Sixth ACM Conference on Recommender Systems
, pp. 139-146
-
-
Shi, Y.1
Karatzoglou, A.2
Baltrunas, L.3
Larson, M.4
Oliver, N.5
Hanjalic, A.6
-
35
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.1
Jordan, M.2
-
36
-
-
80052666619
-
Collaborative topic modeling for recommending scientific articles
-
C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In ACM SIGKDD, KDD'11, pages 448-456, 2011.
-
(2011)
ACM SIGKDD, KDD'11
, pp. 448-456
-
-
Wang, C.1
Blei, D.M.2
-
37
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In ICML, pages 1113-1120, 2009.
-
(2009)
ICML
, pp. 1113-1120
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
|