메뉴 건너뛰기




Volumn 33, Issue , 2014, Pages 275-283

Bayesian nonparametric poisson factorization for recommendation systems

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUDGET CONTROL; FACTORIZATION; INFERENCE ENGINES; ITERATIVE METHODS; RECOMMENDER SYSTEMS; VIRTUAL REALITY;

EID: 84919930449     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (78)

References (31)
  • 1
    • 80053018115 scopus 로고    scopus 로고
    • Efficient and principled method for detecting communities in networks
    • September
    • Ball, B., Karrer, B., & Newman, M. E. J. (2011, September). Efficient and principled method for detecting communities in networks. Physical Review E, 84(3), 036103.
    • (2011) Physical Review E , vol.84 , Issue.3
    • Ball, B.1    Karrer, B.2    Newman, M.E.J.3
  • 2
    • 13844295342 scopus 로고    scopus 로고
    • The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures
    • Beal, M. J., & Ghahramani, Z. (2003). The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayesian Statistics, 7.
    • (2003) Bayesian Statistics , vol.7
    • Beal, M.J.1    Ghahramani, Z.2
  • 4
    • 84877754025 scopus 로고    scopus 로고
    • Truly non-parametric online variational inference for hier-archical dirichlet processes
    • Bryant, M., & Sudderth, E. B. (2012). Truly non-parametric online variational inference for hier-archical Dirichlet processes. In Advances in neural information processing systems (NIPS) (pp. 2708-2716).
    • (2012) Advances in Neural Information Processing Systems (NIPS) , pp. 2708-2716
    • Bryant, M.1    Sudderth, E.B.2
  • 7
    • 67650927380 scopus 로고    scopus 로고
    • Bayesian inference for nonnegative matrix factorisation models
    • May 2009
    • Cemgil, A. T. (2009, May). Bayesian inference for nonnegative matrix factorisation models. Computational Intelligence and Neuroscience, 2009.
    • (2009) Computational Intelligence and Neuroscience
    • Cemgil, A.T.1
  • 9
    • 21644435901 scopus 로고    scopus 로고
    • Bayesian latent variable models for mixed discrete outcomes
    • Dunson, D. B., & Herring, A. H. (2005). Bayesian latent variable models for mixed discrete outcomes. Biostatistics, 6(1), 11-25.
    • (2005) Biostatistics , vol.6 , Issue.1 , pp. 11-25
    • Dunson, D.B.1    Herring, A.H.2
  • 10
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics.
    • (1973) The Annals of Statistics
    • Ferguson, T.S.1
  • 12
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • Ghahramani, Z., & Beal, M. (2001). Propagation algorithms for variational Bayesian learning. In Neural information processing systems (pp. 507-513).
    • (2001) Neural Information Processing Systems , pp. 507-513
    • Ghahramani, Z.1    Beal, M.2
  • 16
    • 77956538800 scopus 로고    scopus 로고
    • Bayesian nonparametric matrix factorization for recorded music
    • J. Frnkranz & T. Joachims (Eds.) Omnipress
    • Hoffman, M. D., and Blei, D. M., & Cook, P. R. (2010). Bayesian nonparametric matrix factorization for recorded music. In J. Frnkranz & T. Joachims (Eds.), ICML (pp. 439-446). Omnipress.
    • (2010) ICML , pp. 439-446
    • Hoffman, M.D.1    Blei, D.M.2    Cook, P.R.3
  • 19
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • November
    • Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999, November). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 20
    • 84857233123 scopus 로고    scopus 로고
    • Nonparametric Bayesian sparse factor models with application to gene expression modelling
    • Knowles, D. A., & Ghahramani, Z. (2011). Nonparametric Bayesian sparse factor models with application to gene expression modelling. Annals of Applied Statistics, 5(2B), 1534-1552.
    • (2011) Annals of Applied Statistics , vol.5 , Issue.2 B , pp. 1534-1552
    • Knowles, D.A.1    Ghahramani, Z.2
  • 21
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • August
    • Koren, Y., Bell, R., & Volinsky, C. (2009, August). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 24
    • 84877750236 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, EECS Department, University of California, Berkeley, CA. (UCB/EECS-2011-78)
    • Miller, K. (2011). Bayesian nonparametric latent feature models. Unpublished doctoral dissertation, EECS Department, University of California, Berkeley, CA. (UCB/EECS-2011-78)
    • (2011) Bayesian Nonparametric Latent Feature Models
    • Miller, K.1
  • 25
    • 57749104755 scopus 로고    scopus 로고
    • Multi-HDP: A nonparametric Bayesian model for tensor factorization
    • D. Fox & C. P. Gomes (Eds.) AAAI Press
    • Porteous, I., Bart, E., & Welling, M. (2008). Multi-HDP: A nonparametric Bayesian model for tensor factorization. In D. Fox & C. P. Gomes (Eds.), AAAI (pp. 1487-1490). AAAI Press.
    • (2008) AAAI , pp. 1487-1490
    • Porteous, I.1    Bart, E.2    Welling, M.3
  • 27
    • 77954201482 scopus 로고    scopus 로고
    • Hierarchical Bayesian nonparametric models with applications
    • N. Hjort, C. Holmes, P. Müller, & S. Walker (Eds.) Cambridge University Press
    • Teh, Y. W., & Jordan, M. I. (2010). Hierarchical Bayesian nonparametric models with applications. In N. Hjort, C. Holmes, P. Müller, & S. Walker (Eds.), Bayesian nonparametrics: Principles and practice. Cambridge University Press.
    • (2010) Bayesian Nonparametrics: Principles and Practice
    • Teh, Y.W.1    Jordan, M.I.2
  • 28
    • 84867112264 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, EECS Department, University of California, Berkeley, CA. (UCB/EECS-2008-130)
    • Thibaux, R. (2008). Nonparametric Bayesian models for machine learning. Unpublished doctoral dissertation, EECS Department, University of California, Berkeley, CA. (UCB/EECS-2008-130)
    • (2008) Nonparametric Bayesian Models for Machine Learning
    • Thibaux, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.