-
1
-
-
0035891408
-
Alternative energy technologies
-
Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.
-
(2001)
Nature
, vol.414
, pp. 332-337
-
-
Dresselhaus, M.S.1
Thomas, I.L.2
-
2
-
-
4043112177
-
Sustainable hydrogen production
-
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.
-
(2004)
Science
, vol.305
, pp. 972-974
-
-
Turner, J.A.1
-
3
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
-
(2009)
Chem. Soc. Rev
, vol.38
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
4
-
-
84971335089
-
Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient ele;ctrocatalyst for hydrogen production
-
Ma, F. X.; Wu, H. B.; Xia, B. Y.; Xu, C. Y.; Lou, X. W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient ele;ctrocatalyst for hydrogen production. Angew. Chem. 2015, 127, 15615–15619.
-
(2015)
Angew. Chem
, vol.127
, pp. 15615-15619
-
-
Ma, F.X.1
Wu, H.B.2
Xia, B.Y.3
Xu, C.Y.4
Lou, X.W.5
-
5
-
-
84959507243
-
Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production
-
Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Xie, S.; Fang, D. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Res. 2016, 9, 886–898.
-
(2016)
Nano Res
, vol.9
, pp. 886-898
-
-
Wang, B.1
Wang, Y.D.2
Lei, Y.P.3
Wu, N.4
Gou, Y.Z.5
Han, C.6
Xie, S.7
Fang, D.8
-
6
-
-
84939261021
-
Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure
-
Huang, H.; Bao, S. X.; Chen, Q. L.; Yang, Y.; Jiang, Z. Y.; Kuang, Q.; Wu, X. Y.; Xie, Z. X.; Zheng, L. S. Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Res. 2015, 8, 2698–2705.
-
(2015)
Nano Res
, vol.8
, pp. 2698-2705
-
-
Huang, H.1
Bao, S.X.2
Chen, Q.L.3
Yang, Y.4
Jiang, Z.Y.5
Kuang, Q.6
Wu, X.Y.7
Xie, Z.X.8
Zheng, L.S.9
-
7
-
-
33744807207
-
Toward efficient hydrogen production at surfaces
-
Norskov, J. K.; Christensen, C. H. Toward efficient hydrogen production at surfaces. Science 2006, 312, 1322–1323.
-
(2006)
Science
, vol.312
, pp. 1322-1323
-
-
Norskov, J.K.1
Christensen, C.H.2
-
8
-
-
69249211208
-
Palladium in fuel cell catalysis
-
Antolini, E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2009, 2, 915–931.
-
(2009)
Energy Environ. Sci
, vol.2
, pp. 915-931
-
-
Antolini, E.1
-
9
-
-
78449289476
-
Solar water splitting cells
-
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.
-
(2010)
Chem. Rev
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.X.5
Santori, E.A.6
Lewis, N.S.7
-
10
-
-
84897023613
-
Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis
-
Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.
-
(2014)
Nano Res
, vol.7
, pp. 410-417
-
-
Zheng, F.L.1
Wong, W.T.2
Yung, K.F.3
-
11
-
-
84921418737
-
Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials
-
Yang, X. G.; Liu, R.; He, Y. M.; Thorne, J.; Zheng, Z.; Wang, D. W. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Res. 2015, 8, 56–81.
-
(2015)
Nano Res
, vol.8
, pp. 56-81
-
-
Yang, X.G.1
Liu, R.2
He, Y.M.3
Thorne, J.4
Zheng, Z.5
Wang, D.W.6
-
12
-
-
84879648335
-
2 transistors
-
2 transistors. ACS Nano 2013, 7, 4879–4891.
-
(2013)
ACS Nano
, vol.7
, pp. 4879-4891
-
-
Late, D.J.1
Huang, Y.K.2
Liu, B.3
Acharya, J.4
Shirodkar, S.N.5
Luo, J.J.6
Yan, A.M.7
Charles, D.8
Waghmare, U.V.9
Dravid, V.P.10
-
13
-
-
84884962314
-
Room temperature electrodeposition of molybdenum sulfide for catalytic and photoluminescence applications
-
Murugesan, S.; Akkineni, A.; Chou, B. P.; Glaz, M. S.; Bout, D. A. V.; Stevenson, K. J. Room temperature electrodeposition of molybdenum sulfide for catalytic and photoluminescence applications. ACS Nano 2013, 7, 8199–8205.
-
(2013)
ACS Nano
, vol.7
, pp. 8199-8205
-
-
Murugesan, S.1
Akkineni, A.2
Chou, B.P.3
Glaz, M.S.4
Bout, D.A.V.5
Stevenson, K.J.6
-
14
-
-
84882302884
-
3–amine hybrid nanowires
-
3–amine hybrid nanowires. Angew. Chem., Int. Ed. 2013, 52, 8602–8606.
-
(2013)
Angew. Chem., Int. Ed
, vol.52
, pp. 8602-8606
-
-
Zhuo, S.F.1
Xu, Y.2
Zhao, W.W.3
Zhang, J.4
Zhang, B.5
-
15
-
-
33751113547
-
2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties
-
2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties. Chem. Commun. 2006, 4738–4740.
-
(2006)
Chem. Commun
, pp. 4738-4740
-
-
Ye, L.1
Wu, C.Z.2
Guo, W.3
Xie, Y.4
-
16
-
-
84925461017
-
2 catalysts for enhanced hydrogen evolution
-
2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.
-
(2015)
Nano Res
, vol.8
, pp. 566-575
-
-
Wang, H.T.1
Tsai, C.2
Kong, D.S.3
Chan, K.A.4
Pedersen, F.5
Nørskov, J.K.6
Cui, Y.7
-
17
-
-
84961286533
-
Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions
-
Khan, M.; Yousaf, A. B.; Chen, M. M.; Wei, C. S.; Wu, X. B.; Huang, N. D.; Qi, Z. M.; Li, L. B. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 2016, 9, 837–848.
-
(2016)
Nano Res
, vol.9
, pp. 837-848
-
-
Khan, M.1
Yousaf, A.B.2
Chen, M.M.3
Wei, C.S.4
Wu, X.B.5
Huang, N.D.6
Qi, Z.M.7
Li, L.B.8
-
18
-
-
84863012270
-
2 edge site mimic for catalytic hydrogen generation
-
2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.
-
(2012)
Science
, vol.335
, pp. 698-702
-
-
Karunadasa, H.I.1
Montalvo, E.2
Sun, Y.J.3
Majda, M.4
Long, J.R.5
Chang, C.J.6
-
19
-
-
15744396507
-
Trends in the exchange current for hydrogen evolution
-
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.
-
(2005)
J. Electrochem. Soc
, vol.152
, pp. J23-J26
-
-
Nørskov, J.K.1
Bligaard, T.2
Logadottir, A.3
Kitchin, J.R.4
Chen, J.G.5
Pandelov, S.6
Stimming, U.7
-
20
-
-
33750453016
-
Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
-
Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.
-
(2006)
Nat. Mater
, vol.5
, pp. 909-913
-
-
Greeley, J.1
Jaramillo, T.F.2
Bonde, J.3
Chorkendorff, I.4
Nørskov, J.K.5
-
21
-
-
77951542857
-
Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes
-
Tenne, R.; Redlich, M. Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes. Chem. Soc. Rev. 2010, 39, 1423–1434.
-
(2010)
Chem. Soc. Rev
, vol.39
, pp. 1423-1434
-
-
Tenne, R.1
Redlich, M.2
-
22
-
-
34447326950
-
2 nanocatalysts
-
2 nanocatalysts. Science 2007, 317, 100–102.
-
(2007)
Science
, vol.317
, pp. 100-102
-
-
Jaramillo, T.F.1
Jørgensen, K.P.2
Bonde, J.3
Nielsen, J.H.4
Horch, S.5
Chorkendorff, I.6
-
23
-
-
84881167566
-
Van der Waals heterostructures
-
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.
-
(2013)
Nature
, vol.499
, pp. 419-425
-
-
Geim, A.K.1
Grigorieva, I.V.2
-
24
-
-
84866843541
-
Magnetic properties of MoS2: Existence of ferromagnetism
-
Tongay, S.; Varnoosfaderani, S. S.; Appleton, B. R.; Wu, J. Q.; Hebard, A. F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105.
-
(2012)
Appl. Phys. Lett
, vol.101
, pp. 123105
-
-
Tongay, S.1
Varnoosfaderani, S.S.2
Appleton, B.R.3
Wu, J.Q.4
Hebard, A.F.5
-
25
-
-
84947093609
-
2 nanocrystals for improved Na-ion storage capabilities
-
2 nanocrystals for improved Na-ion storage capabilities. ACS Appl. Mater. Interfaces 2015, 7, 24694–24702.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 24694-24702
-
-
Choi, S.H.1
Kang, Y.C.2
-
26
-
-
84876498623
-
2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries
-
2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.
-
(2013)
Adv. Mater
, vol.25
, pp. 2279-2283
-
-
Hong, Y.J.1
Son, M.Y.2
Kang, Y.C.3
-
27
-
-
84865591467
-
4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries
-
4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.
-
(2012)
Adv. Mater
, vol.24
, pp. 4609-4613
-
-
Zhang, G.Q.1
Yu, L.2
Wu, H.B.3
Hoster, H.E.4
Lou, X.W.5
-
28
-
-
84904575767
-
Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage
-
Zhang, H. W.; Zhou, L.; Noonan, O.; Martin, D. J.; Whittaker, A. K.; Yu, C. Z. Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage. Adv. Funct. Mater. 2014, 24, 4337–4342.
-
(2014)
Adv. Funct. Mater
, vol.24
, pp. 4337-4342
-
-
Zhang, H.W.1
Zhou, L.2
Noonan, O.3
Martin, D.J.4
Whittaker, A.K.5
Yu, C.Z.6
-
29
-
-
84856733259
-
Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems
-
Lai, X. Y.; Halperta, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.
-
(2012)
Energy Environ. Sci
, vol.5
, pp. 5604-5618
-
-
Lai, X.Y.1
Halperta, J.E.2
Wang, D.3
-
30
-
-
80755172041
-
Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries
-
Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.
-
(2011)
Chem. Commun
, vol.47
, pp. 12578-12591
-
-
Liu, J.1
Qiao, S.Z.2
Chen, J.S.3
Lou, X.W.4
Xing, X.R.5
Lu, G.Q.6
-
34
-
-
84947205025
-
2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries
-
2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries. Electrochimica. Acta. 2016, 187, 55–64.
-
(2016)
Electrochimica. Acta
, vol.187
, pp. 55-64
-
-
Xia, Y.1
Wang, B.B.2
Zhao, X.J.3
Wang, G.4
Wang, H.5
-
35
-
-
55749110413
-
Hollow micro-/nanostructures: Synthesis and applications
-
Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.
-
(2008)
Adv. Mater
, vol.20
, pp. 3987-4019
-
-
Lou, X.W.1
Archer, L.A.2
Yang, Z.C.3
-
36
-
-
84859304135
-
Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries
-
Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542.
-
(2012)
Nanoscale
, vol.4
, pp. 2526-2542
-
-
Wu, H.B.1
Chen, J.S.2
Hng, H.H.3
Lou, X.W.4
-
37
-
-
84865858203
-
A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions
-
Yang, Y.; Liu, X.; Li, X. B.; Zhao, J.; Bai, S. Y.; Liu, J.; Yang, Q. H. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem., Int. Ed. 2012, 51, 9164–9168.
-
(2012)
Angew. Chem., Int. Ed
, vol.51
, pp. 9164-9168
-
-
Yang, Y.1
Liu, X.2
Li, X.B.3
Zhao, J.4
Bai, S.Y.5
Liu, J.6
Yang, Q.H.7
-
38
-
-
84862751651
-
et al. ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors
-
Wang, X.; Liao, M. Y.; Zhong, Y. T.; Zheng, J. Y.; Tian, W.; Zhai, T. Y.; Zhi, C. Y.; Ma, Y.; Yao, J. N.; Bando, Y. S. et al. ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors. Adv. Mater. 2012, 24, 3421–3425.
-
(2012)
Adv. Mater
, vol.24
, pp. 3421-3425
-
-
Wang, X.1
Liao, M.Y.2
Zhong, Y.T.3
Zheng, J.Y.4
Tian, W.5
Zhai, T.Y.6
Zhi, C.Y.7
Ma, Y.8
Yao, J.N.9
Bando, Y.S.10
-
39
-
-
84931477525
-
2 core/sheath fiber membranes as highly flexible and binderfree anodes for lithium-ion batteries
-
2 core/sheath fiber membranes as highly flexible and binderfree anodes for lithium-ion batteries. Nanoscale. 2015, 7, 11093.
-
(2015)
Nanoscale
, vol.7
, pp. 11093
-
-
Miao, Y.E.1
Huang, Y.P.2
Zhang, L.S.3
Fan, W.4
Lai, F.L.5
Liu, T.X.6
-
40
-
-
84901702203
-
3 hollow discoids with enhanced photoactivity
-
3 hollow discoids with enhanced photoactivity. Angew. Chem., Int. Ed. 2014, 53, 5917–5921.
-
(2014)
Angew. Chem., Int. Ed
, vol.53
, pp. 5917-5921
-
-
Gao, X.H.1
Wu, H.B.2
Zheng, L.X.3
Zhong, Y.J.4
Hu, Y.5
Lou, X.W.6
-
41
-
-
84886416670
-
2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
-
2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.
-
(2013)
Adv. Mater
, vol.25
, pp. 5807-5813
-
-
Xie, J.F.1
Zhang, H.2
Li, S.3
Wang, R.X.4
Sun, X.5
Zhou, M.6
Zhou, J.F.7
Lou, X.W.8
Xie, Y.9
-
42
-
-
84880372807
-
2 nanosheets
-
2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.
-
(2013)
J. Am. Chem. Soc
, vol.135
, pp. 10274-10277
-
-
Lukowski, M.A.1
Daniel, A.S.2
Meng, F.3
Forticaux, A.4
Li, L.S.5
Jin, S.6
-
43
-
-
84889664636
-
2 nanofilms and its application in improving hydrogen evolution reaction
-
2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 19701-19706
-
-
Wang, H.T.1
Lu, Z.Y.2
Xu, S.C.3
Kong, D.S.4
Cha, J.J.5
Zheng, G.Y.6
Hsu, P.C.7
Yan, K.8
Bradshaw, D.9
Prinz, F.B.10
-
44
-
-
84874965738
-
2 films with vertically aligned layers
-
2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.
-
(2013)
Nano Lett
, vol.13
, pp. 1341-1347
-
-
Kong, D.S.1
Wang, H.T.2
Cha, J.J.3
Pasta, M.4
Koski, K.J.5
Yao, J.6
Cui, Y.7
-
45
-
-
32644439691
-
Nucleation–dissolution–recrystallization: A new growth mechanism for t-selenium nanotubes
-
Xi, G. C.; Xiong, K.; Zhao, Q. B.; Zhang, R.; Zhang, H. B.; Qian, Y. T. Nucleation–dissolution–recrystallization: A new growth mechanism for t-selenium nanotubes. Crystal Growth & Design 2006, 6, 577–582.
-
(2006)
Crystal Growth & Design
, vol.6
, pp. 577-582
-
-
Xi, G.C.1
Xiong, K.2
Zhao, Q.B.3
Zhang, R.4
Zhang, H.B.5
Qian, Y.T.6
|