-
1
-
-
0000574755
-
Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen
-
Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.
-
(1995)
Acc. Chem. Res
, vol.28
, pp. 141-145
-
-
Bard, A.J.1
Fox, M.A.2
-
2
-
-
0035891408
-
Alternative energy technologies
-
Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature2001, 414, 332–337.
-
(2001)
Nature
, vol.414
, pp. 332-337
-
-
Dresselhaus, M.S.1
Thomas, I.L.2
-
3
-
-
78449289476
-
Solar water splitting cells
-
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.
-
(2010)
Chem. Rev
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.X.5
Santori, E.A.6
Lewis, N.S.7
-
4
-
-
79955891162
-
2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction
-
2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.
-
(2011)
J. Am. Chem. Soc
, vol.133
, pp. 7296-7299
-
-
Li, Y.G.1
Wang, H.L.2
Xie, L.M.3
Liang, Y.Y.4
Hong, G.S.5
Dai, H.J.6
-
5
-
-
84899629076
-
Hydrogen evolution by a metal-free electrocatalyst
-
Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.
-
(2014)
Nat. Commun
, vol.5
, pp. 3783
-
-
Zheng, Y.1
Jiao, Y.2
Zhu, Y.H.3
Li, L.H.4
Han, Y.5
Chen, Y.6
Du, A.J.7
Jaroniec, M.8
Qiao, S.Z.9
-
6
-
-
84875294732
-
Layered nanojunctions for hydrogen-evolution catalysis
-
Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621–3625.
-
(2013)
Angew. Chem., Int. Ed
, vol.52
, pp. 3621-3625
-
-
Hou, Y.D.1
Laursen, A.B.2
Zhang, J.S.3
Zhang, G.G.4
Zhu, Y.S.5
Wang, X.C.6
Dahl, S.7
Chorkendorff, I.8
-
7
-
-
84904437446
-
2) micro-and nanostructures
-
2) micro-and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 10053-10061
-
-
Faber, M.S.1
Dziedzic, R.2
Lukowski, M.A.3
Kaiser, N.S.4
Ding, Q.5
Jin, S.6
-
8
-
-
84882331328
-
Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenidenanobelts for the electrochemical production of hydrogen
-
Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenidenanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.
-
(2013)
Angew. Chem., Int. Ed
, vol.52
, pp. 8546-8550
-
-
Xu, Y.F.1
Gao, M.R.2
Zheng, Y.R.3
Jiang, J.4
Yu, S.H.5
-
9
-
-
84883854631
-
Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts
-
Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.
-
(2013)
Chem. Commun
, vol.49
, pp. 8896-8909
-
-
Chen, W.F.1
Muckerman, J.T.2
Fujita, E.3
-
10
-
-
84900868846
-
Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles
-
Popczun, E. J.; Read, C. G.; Roske, C. W; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.
-
(2014)
Angew. Chem., Int. Ed
, vol.53
, pp. 5427-5430
-
-
Popczun, E.J.1
Read, C.G.2
Roske, C.W.3
Lewis, N.S.4
Schaak, R.E.5
-
11
-
-
84901684241
-
2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution
-
2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano2014, 8, 4940–4947.
-
(2014)
ACS Nano
, vol.8
, pp. 4940-4947
-
-
Wang, H.T.1
Lu, Z.Y.2
Kong, D.S.3
Sun, J.4
Hymel, T.M.5
Cui, Y.6
-
12
-
-
84903272556
-
Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution
-
Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 6710–6714.
-
(2014)
Angew. Chem., Int. Ed
, vol.53
, pp. 6710-6714
-
-
Liu, Q.1
Tian, J.Q.2
Cui, W.3
Jiang, P.4
Cheng, N.Y.5
Asiri, A.M.6
Sun, X.P.7
-
13
-
-
84910039495
-
Electrocatalysis of hydrogen evolution: Progress in cathode activation
-
Gerischer H., Tobias C. W., (eds), VCH Verlagsgesellschaft mbH, Weinheim
-
Trasatti, S. Electrocatalysis of hydrogen evolution: Progress in cathode activation. In Advances in Electrochemical Science and Engineering, Volume 2. Gerischer, H.; Tobias, C. W., Eds.; Weinheim: VCH Verlagsgesellschaft mbH, 1992.
-
(1992)
In Advances in Electrochemical Science and Engineering
-
-
Trasatti, S.1
-
15
-
-
40849119589
-
Colloid-imprinted carbon with superb nanostructure as an efficient cathode electrocatalyst support in proton exchange membrane fuel cell
-
Fang, B. Z.; Kim, J. H.; Yu, J. S. Colloid-imprinted carbon with superb nanostructure as an efficient cathode electrocatalyst support in proton exchange membrane fuel cell. Electrochem. Commun. 2008, 10, 659–662.
-
(2008)
Electrochem. Commun
, vol.10
, pp. 659-662
-
-
Fang, B.Z.1
Kim, J.H.2
Yu, J.S.3
-
16
-
-
38749094808
-
Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers
-
Grigoriev, S. A.; Millet, P.; Fateev, V. N. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. J. Power Sources2008, 177, 281–285.
-
(2008)
J. Power Sources
, vol.177
, pp. 281-285
-
-
Grigoriev, S.A.1
Millet, P.2
Fateev, V.N.3
-
17
-
-
84868370135
-
Template-free pseudomorphic synthesis of tungsten carbide nanorods
-
Yan, Y.; Zhang, L.; Qi, X. Y.; Song, H.; Wang, J. Y.; Zhang, H.; Wang, X. Template-free pseudomorphic synthesis of tungsten carbide nanorods. Small2012, 8, 3350–3356.
-
(2012)
Small
, vol.8
, pp. 3350-3356
-
-
Yan, Y.1
Zhang, L.2
Qi, X.Y.3
Song, H.4
Wang, J.Y.5
Zhang, H.6
Wang, X.7
-
18
-
-
80052203149
-
Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
-
McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011, 4, 3573–3583.
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 3573-3583
-
-
McKone, J.R.1
Warren, E.L.2
Bierman, M.J.3
Boettcher, S.W.4
Brunschwig, B.S.5
Lewis, N.S.6
Gray, H.B.7
-
19
-
-
34447326950
-
2 nanocatalysts
-
2 nanocatalysts. Science2007, 317, 100–102.
-
(2007)
Science
, vol.317
, pp. 100-102
-
-
Jaramillo, T.F.1
Jørgensen, K.P.2
Bonde, J.3
Nielsen, J.H.4
Horch, S.5
Chorkendorff, I.6
-
20
-
-
84856690904
-
Molybdenum sulfides—Efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution
-
Laursen, A. B.; Kegnæ s, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—Efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577–5591.
-
(2012)
Energy Environ. Sci
, vol.5
, pp. 5577-5591
-
-
Laursen, A.B.K.1
s, S.2
Dahl, S.3
Chorkendorff, I.4
-
21
-
-
84862188112
-
2 catalysts in biphasic liquid systems
-
2 catalysts in biphasic liquid systems. Chem. Commun. 2012, 48, 6484–6486.
-
(2012)
Chem. Commun
, vol.48
, pp. 6484-6486
-
-
Ge, P.Y.1
Scanlon, M.D.2
Peljo, P.3
Bian, X.J.4
Vubrel, H.5
O’Neill, A.6
Coleman, J.N.7
Cantoni, M.8
Hu, X.L.9
Kontturi, K.10
-
22
-
-
84880276450
-
Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries
-
Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.
-
(2013)
Adv. Funct. Mater
, vol.23
, pp. 4345-4353
-
-
Huang, X.L.1
Wang, R.Z.2
Xu, D.3
Wang, Z.L.4
Wang, H.G.5
Xu, J.J.6
Wu, Z.7
Liu, Q.C.8
Zhang, Y.9
Zhang, X.B.10
-
23
-
-
84881139398
-
Graphene-network-backboned architectures for high-performance lithium storage
-
Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 2013, 25, 3979–3984.
-
(2013)
Adv. Mater
, vol.25
, pp. 3979-3984
-
-
Gong, Y.J.1
Yang, S.B.2
Liu, Z.3
Ma, L.L.4
Vajtai, R.5
Ajayan, P.M.6
-
24
-
-
84886835475
-
Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution
-
Bian, X. J.; Scanlon, M. D.; Wang, S. N.; Liao, L.; Tang, Y.; Liu, B. H.; Girault, H. H. Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution. Chem. Sci. 2013, 4, 3432–3441.
-
(2013)
Chem. Sci
, vol.4
, pp. 3432-3441
-
-
Bian, X.J.1
Scanlon, M.D.2
Wang, S.N.3
Liao, L.4
Tang, Y.5
Liu, B.H.6
Girault, H.H.7
-
25
-
-
84897514531
-
2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction
-
2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 4897-4900
-
-
Kong, D.S.1
Wang, H.T.2
Lu, Z.Y.3
Cui, Y.4
-
26
-
-
84873335713
-
Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams
-
Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.
-
(2013)
Adv. Mater
, vol.25
, pp. 756-760
-
-
Chang, Y.H.1
Lin, C.T.2
Chen, T.Y.3
Hsu, C.L.4
Lee, Y.H.5
Zhang, W.J.6
Wei, K.H.7
Li, L.J.8
-
27
-
-
84897710850
-
Threedimensional molybdenum sulfide sponges for electrocatalytic water splitting
-
Chang, Y. H; Wu, F. Y.; Chen, T. Y.; Hsu, C. L.; Chen, C. H.; Wiryo, F.; Wei, K. H.; Chiang, C. Y.; Li, L. J. Threedimensional molybdenum sulfide sponges for electrocatalytic water splitting. Small2014, 10, 895–900.
-
(2014)
Small
, vol.10
, pp. 895-900
-
-
Chang, Y.H.1
Wu, F.Y.2
Chen, T.Y.3
Hsu, C.L.4
Chen, C.H.5
Wiryo, F.6
Wei, K.H.7
Chiang, C.Y.8
Li, L.J.9
-
28
-
-
67649225738
-
Graphene: status and prospects
-
Geim, A. K. Graphene: status and prospects. Science2009, 324, 1530–1534.
-
(2009)
Science
, vol.324
, pp. 1530-1534
-
-
Geim, A.K.1
-
29
-
-
73249148467
-
Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage
-
Lv, W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C.; Chen, C. M.; Hou, P. X.; Liu, C.; Yang, Q. H. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano2009, 3, 3730–3736.
-
(2009)
ACS Nano
, vol.3
, pp. 3730-3736
-
-
Lv, W.1
Tang, D.M.2
He, Y.B.3
You, C.H.4
Shi, Z.Q.5
Chen, X.C.6
Chen, C.M.7
Hou, P.X.8
Liu, C.9
Yang, Q.H.10
-
30
-
-
78649527520
-
Graphene oxide as a chemically tunable platform for optical applications
-
Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.
-
(2010)
Nat. Chem
, vol.2
, pp. 1015-1024
-
-
Loh, K.P.1
Bao, Q.L.2
Eda, G.3
Chhowalla, M.4
-
31
-
-
78650104190
-
Reduced graphene oxide by chemical graphitization
-
Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.
-
(2010)
Nat. Commun
, vol.1
, pp. 73
-
-
Moon, I.K.1
Lee, J.2
Ruoff, R.S.3
Lee, H.4
-
33
-
-
67650684978
-
Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties
-
Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956.
-
(2009)
Chem. Mater
, vol.21
, pp. 2950-2956
-
-
Zhou, Y.1
Bao, Q.L.2
Tang, L.A.L.3
Zhong, Y.L.4
Loh, K.P.5
-
34
-
-
84919354736
-
Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution
-
Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 12594–12599.
-
(2014)
Angew. Chem., Int. Ed
, vol.53
, pp. 12594-12599
-
-
Peng, S.J.1
Li, L.L.2
Han, X.P.3
Sun, W.P.4
Srinivasan, M.5
Mhaisalkar, S.G.6
Cheng, F.Y.7
Yan, Q.Y.8
Chen, J.9
Ramakrishna, S.10
-
35
-
-
84883314625
-
Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity
-
Sun, T.; Zhang, Z. Y.; Xiao, J. W.; Chen, C.; Xiao, F.; Wang, S.; Liu, Y. Q. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Sci. Rep. 2013, 3, 2527.
-
(2013)
Sci. Rep
, vol.3
, pp. 2527
-
-
Sun, T.1
Zhang, Z.Y.2
Xiao, J.W.3
Chen, C.4
Xiao, F.5
Wang, S.6
Liu, Y.Q.7
-
36
-
-
84928958255
-
Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction
-
Seo, B.; Jung, G. Y.; Sa Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C. Shin, H. S.; Kwak, S. K. et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano2015, 9, 3728–3739.
-
(2015)
ACS Nano
, vol.9
, pp. 3728-3739
-
-
Seo, B.1
Jung, G.Y.2
Sa, Y.J.3
Jeong, H.Y.4
Cheon, J.Y.5
Lee, J.H.6
Kim, H.Y.7
Kim, J.C.8
Shin, H.S.9
Kwak, S.K.10
-
37
-
-
84927643353
-
2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries
-
2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. J. Phys. Chem. C2015, 119, 7959–7968.
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 7959-7968
-
-
Li, H.L.1
Yu, K.2
Fuo, H.3
Guo, B.J.4
Lei, X.5
Zhou, Z.Q.6
-
38
-
-
79955048025
-
2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries
-
2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252–4254.
-
(2011)
Chem. Commun
, vol.47
, pp. 4252-4254
-
-
Chang, K.1
Chen, W.X.2
-
39
-
-
9444283193
-
High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs
-
Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon2005, 43, 153–161.
-
(2005)
Carbon
, vol.43
, pp. 153-161
-
-
Okpalugo, T.I.T.1
Papakonstantinou, P.2
Murphy, H.3
McLaughlin, J.4
Brown, N.M.D.5
-
40
-
-
77955304786
-
Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media
-
Lee, K. R.; Lee, K. U.; Lee, J. W.; Ahn, B. T.; Woo, S. I. Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem. Commun. 2010, 12, 1052–1055.
-
(2010)
Electrochem. Commun
, vol.12
, pp. 1052-1055
-
-
Lee, K.R.1
Lee, K.U.2
Lee, J.W.3
Ahn, B.T.4
Woo, S.I.5
-
41
-
-
83655172584
-
2
-
2. Nano Lett. 2011, 11, 5111–5116.
-
(2011)
Nano Lett
, vol.11
, pp. 5111-5116
-
-
Eda, G.1
Yamaguchi, H.2
Voiry, D.3
Fujita, T.4
Chen, M.W.5
Chhowalla, M.6
-
42
-
-
84901654922
-
2 synthesized by chemical vapor deposition
-
2 synthesized by chemical vapor deposition. ACS Nano2014, 8, 4961–4968.
-
(2014)
ACS Nano
, vol.8
, pp. 4961-4968
-
-
Park, W.1
Baik, J.2
Kim, T.-Y.3
Cho, K.4
Hong, W.-K.5
Shin, H.-J.6
Lee, T.7
-
43
-
-
84921458226
-
2 supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities
-
2 supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities. RSC Adv. 2015, 5, 10352–10357.
-
(2015)
RSC Adv
, vol.5
, pp. 10352-10357
-
-
Sun, Z.1
Zhao, Q.S.2
Zhang, G.H.3
Li, Y.4
Zhang, G.L.5
Zhang, F.B.6
Fan, X.B.7
-
44
-
-
0014827363
-
Lattice mode degeneracy in MoS2 and other layer compounds
-
Verble, J. L.; Wieting, T. J. Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 1970, 25, 362–365.
-
(1970)
Phys. Rev. Lett
, vol.25
, pp. 362-365
-
-
Verble, J.L.1
Wieting, T.J.2
-
45
-
-
14844364291
-
Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis
-
Li, Q.; Walter, E. C.; van der Veer, W. E.; Murray, B. J.; Newberg, J. T.; Bohannan, E. W.; Switzer, J. A.; Hemminger, J. C.; Penner, R. M. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J. Phys. Chem. B2005, 109, 3169–3182.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 3169-3182
-
-
Li, Q.1
Walter, E.C.2
van der Veer, W.E.3
Murray, B.J.4
Newberg, J.T.5
Bohannan, E.W.6
Switzer, J.A.7
Hemminger, J.C.8
Penner, R.M.9
-
46
-
-
84866051074
-
2 flakes
-
2 flakes. Appl. Phys. Lett. 2012, 101, 101906.
-
(2012)
Appl. Phys. Lett
, vol.101
, pp. 101906
-
-
Plechinger, G.1
Heydrich, S.2
Eroms, J.3
Weiss, D.S.4
ller, C.5
Korn, T.6
-
47
-
-
84876590946
-
2-graphene composites as anode materials of Li-ion batteries
-
2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A2013, 1, 2202–2210.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2202-2210
-
-
Wang, Z.1
Chen, T.2
Chen, W.X.3
Chang, K.4
Ma, L.5
Huang, G.C.6
Chen, D.Y.7
Lee, J.Y.8
-
48
-
-
84863116264
-
Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction
-
Ma, Y. W.; Sun, L. Y.; Huang, W.; Zhang, L. R.; Zhao, J.; Fan, Q. L.; Huang, W. Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C2011, 115, 24592–24597.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 24592-24597
-
-
Ma, Y.W.1
Sun, L.Y.2
Huang, W.3
Zhang, L.R.4
Zhao, J.5
Fan, Q.L.6
Huang, W.7
|