-
1
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
[1] Fujishima, A., Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 238:5358 (1972), 37–38.
-
(1972)
Nature
, vol.238
, Issue.5358
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
2
-
-
0038174714
-
Titanium dioxide photocatalysis
-
[2] Fujishima, A., Rao, T.N., Tryk, D.A., Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1:1 (2000), 1–21.
-
(2000)
J. Photochem. Photobiol. C: Photochem. Rev.
, vol.1
, Issue.1
, pp. 1-21
-
-
Fujishima, A.1
Rao, T.N.2
Tryk, D.A.3
-
3
-
-
34548512249
-
Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup
-
[3] Fujishima, A., Zhang, X., Tryk, D.A., Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy 32:14 (2007), 2664–2672.
-
(2007)
Int. J. Hydrogen Energy
, vol.32
, Issue.14
, pp. 2664-2672
-
-
Fujishima, A.1
Zhang, X.2
Tryk, D.A.3
-
4
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
[4] Kudo, A., Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38:1 (2009), 253–278.
-
(2009)
Chem. Soc. Rev.
, vol.38
, Issue.1
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
5
-
-
31544452793
-
TiO2 photocatalysis: a historical overview and future prospects
-
[5] Kazuhito, H., Hiroshi, I., Akira, F., TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys., 44(12R), 2005, 8269.
-
(2005)
Jpn. J. Appl. Phys.
, vol.44
, Issue.12R
, pp. 8269
-
-
Kazuhito, H.1
Hiroshi, I.2
Akira, F.3
-
6
-
-
84865300463
-
TiO2 photocatalysis: design and applications
-
[6] Nakata, K., Fujishima, A., TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C: Photochem. Rev. 13:3 (2012), 169–189.
-
(2012)
J. Photochem. Photobiol. C: Photochem. Rev.
, vol.13
, Issue.3
, pp. 169-189
-
-
Nakata, K.1
Fujishima, A.2
-
7
-
-
84908199187
-
Understanding TiO2 photocatalysis: mechanisms and materials
-
[7] Schneider, J., et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114:19 (2014), 9919–9986.
-
(2014)
Chem. Rev.
, vol.114
, Issue.19
, pp. 9919-9986
-
-
Schneider, J.1
-
8
-
-
84857757585
-
Semiconductor photocatalysis—past, present, and future outlook
-
[8] Serpone, N., Emeline, A., Semiconductor photocatalysis—past, present, and future outlook. J. Phys. Chem. Lett. 3:5 (2012), 673–677.
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, Issue.5
, pp. 673-677
-
-
Serpone, N.1
Emeline, A.2
-
9
-
-
84937517030
-
Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review
-
(just-accepted)
-
[9] Ghosh, S., Das, A., Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol. Environ. Chem., 2015, 1–43 (just-accepted).
-
(2015)
Toxicol. Environ. Chem.
, pp. 1-43
-
-
Ghosh, S.1
Das, A.2
-
10
-
-
79957932124
-
A surface science perspective on photocatalysis
-
[10] Henderson, M.A., A surface science perspective on photocatalysis. Surf. Sci. Rep. 66:6 (2011), 185–297.
-
(2011)
Surf. Sci. Rep.
, vol.66
, Issue.6
, pp. 185-297
-
-
Henderson, M.A.1
-
12
-
-
2342536975
-
Novel group 14 nitrides
-
[12] Kroke, E., Schwarz, M., Novel group 14 nitrides. Coord. Chem. Rev. 248:5–6 (2004), 493–532.
-
(2004)
Coord. Chem. Rev.
, vol.248
, Issue.5-6
, pp. 493-532
-
-
Kroke, E.1
Schwarz, M.2
-
13
-
-
20444373328
-
Prediction of new low compressibility solids
-
[13] Liu, A.Y., Cohen, M.L., Prediction of new low compressibility solids. Science 245:4920 (1989), 841–842.
-
(1989)
Science
, vol.245
, Issue.4920
, pp. 841-842
-
-
Liu, A.Y.1
Cohen, M.L.2
-
14
-
-
0000948536
-
What are the possible structures for CN x compounds? The example of C3N
-
[14] Sandré, E., Pickard, C.J., Colliex, C., What are the possible structures for CN x compounds? The example of C3N. Chem. Phys. Lett. 325:1-3 (2000), 53–60.
-
(2000)
Chem. Phys. Lett.
, vol.325
, Issue.1-3
, pp. 53-60
-
-
Sandré, E.1
Pickard, C.J.2
Colliex, C.3
-
16
-
-
0035131304
-
Tetragonal crystalline carbon nitrides: theoretical predictions
-
[16] Kim, E., et al. Tetragonal crystalline carbon nitrides: theoretical predictions. Phys. Rev. Lett. 86:4 (2001), 652–655.
-
(2001)
Phys. Rev. Lett.
, vol.86
, Issue.4
, pp. 652-655
-
-
Kim, E.1
-
17
-
-
0038183857
-
Structure and electronic properties of new model dinitride systems: a density-functional study of CN2, SiN2, and GeN2
-
[17] Weihrich, R., Eyert, V., Matar, S.F., Structure and electronic properties of new model dinitride systems: a density-functional study of CN2, SiN2, and GeN2. Chem. Phys. Lett. 373:5–6 (2003), 636–641.
-
(2003)
Chem. Phys. Lett.
, vol.373
, Issue.5-6
, pp. 636-641
-
-
Weihrich, R.1
Eyert, V.2
Matar, S.F.3
-
18
-
-
0037113659
-
Role of lone-pair interactions and local disorder in determining the interdependency of optical constants of a- C N: H thin films
-
[18] Fanchini, G., et al. Role of lone-pair interactions and local disorder in determining the interdependency of optical constants of a- C N: H thin films. Phys. Rev. B, 66(19), 2002, 195415.
-
(2002)
Phys. Rev. B
, vol.66
, Issue.19
, pp. 195415
-
-
Fanchini, G.1
-
19
-
-
57849130247
-
A metal-free polymeric photocatalyst for hydrogen production from water under visible light
-
[19] Wang, X., et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8:1 (2009), 76–80.
-
(2009)
Nat. Mater.
, vol.8
, Issue.1
, pp. 76-80
-
-
Wang, X.1
-
20
-
-
0003142089
-
Is carbon nitride harder than diamond? No, but its girth increases when stretched (negative Poisson ratio)
-
[20] Guo, Y., Goddard Iii, W.A., Is carbon nitride harder than diamond? No, but its girth increases when stretched (negative Poisson ratio). Chem. Phys. Lett. 237:1-2 (1995), 72–76.
-
(1995)
Chem. Phys. Lett.
, vol.237
, Issue.1-2
, pp. 72-76
-
-
Guo, Y.1
Goddard Iii, W.A.2
-
21
-
-
0029736292
-
Carbon nitride and other speculative superhard materials
-
[21] Sung, C.M., Sung, M., Carbon nitride and other speculative superhard materials. Mater. Chem. Phys. 43:1 (1996), 1–18.
-
(1996)
Mater. Chem. Phys.
, vol.43
, Issue.1
, pp. 1-18
-
-
Sung, C.M.1
Sung, M.2
-
22
-
-
0030569717
-
Low-compressibility carbon nitrides
-
[22] Teter, D.M., Hemley, R.J., Low-compressibility carbon nitrides. Science 271:5245 (1996), 53–55.
-
(1996)
Science
, vol.271
, Issue.5245
, pp. 53-55
-
-
Teter, D.M.1
Hemley, R.J.2
-
23
-
-
73349105606
-
Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization
-
[23] Zhang, J., et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 49:2 (2010), 441–444.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, Issue.2
, pp. 441-444
-
-
Zhang, J.1
-
24
-
-
84899873420
-
4) material: electronic structure, photocatalytic and photoelectronic properties
-
4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C: Photochem. Rev. 20:0 (2014), 33–50.
-
(2014)
J. Photochem. Photobiol. C: Photochem. Rev.
, vol.20
, pp. 33-50
-
-
Dong, G.1
-
25
-
-
84922792767
-
2 evolution and Rhodamine B degradation under visible light
-
2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 3:7 (2015), 3862–3867.
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.7
, pp. 3862-3867
-
-
Zhou, Y.1
-
26
-
-
84868675315
-
4 via doping of nonmetal elements: a first-principles study
-
4 via doping of nonmetal elements: a first-principles study. J. Phys. Chem. C 116:44 (2012), 23485–23493.
-
(2012)
J. Phys. Chem. C
, vol.116
, Issue.44
, pp. 23485-23493
-
-
Ma, X.1
-
27
-
-
77955809087
-
Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4
-
[27] Liu, G., et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132:33 (2010), 11642–11648.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.33
, pp. 11642-11648
-
-
Liu, G.1
-
28
-
-
84926676301
-
4 composites for catalytic synthesis of dimethyl carbonate
-
4 composites for catalytic synthesis of dimethyl carbonate. Appl. Cata. A: Gen. 496 (2015), 1–8.
-
(2015)
Appl. Cata. A: Gen.
, vol.496
, pp. 1-8
-
-
Xu, J.1
-
30
-
-
77957894558
-
4 under visible light irradiation
-
4 under visible light irradiation. Langmuir 26:6 (2010), 3894–3901.
-
(2010)
Langmuir
, vol.26
, Issue.6
, pp. 3894-3901
-
-
Yan, S.C.1
Li, Z.S.2
Zou, Z.G.3
-
31
-
-
84908375646
-
4 with high visible light activity
-
4 with high visible light activity. J. Hazard. Mater. 280:0 (2014), 713–722.
-
(2014)
J. Hazard. Mater.
, vol.280
, pp. 713-722
-
-
Zhang, J.1
-
32
-
-
84925431408
-
4 nanorods
-
4 nanorods. RSC Adv. 5:35 (2015), 27933–27939.
-
(2015)
RSC Adv.
, vol.5
, Issue.35
, pp. 27933-27939
-
-
Nong, Q.1
-
33
-
-
84923027428
-
3 nanocomposites with enhanced visible light photocatalytic activities
-
3 nanocomposites with enhanced visible light photocatalytic activities. J. Colloid Interface Sci. 448:0 (2015), 17–23.
-
(2015)
J. Colloid Interface Sci.
, vol.448
, pp. 17-23
-
-
Wang, X.1
-
34
-
-
84904413114
-
3 as efficient visible light photocatalyst
-
3 as efficient visible light photocatalyst. Dalton Trans. 43:31 (2014), 12026–12036.
-
(2014)
Dalton Trans.
, vol.43
, Issue.31
, pp. 12026-12036
-
-
Zhang, W.1
-
35
-
-
84863643465
-
Graphite-like C3N4 hybridized ZnWO4 nanorods: synthesis and its enhanced photocatalysis in visible light
-
[35] Wang, Y., et al. Graphite-like C3N4 hybridized ZnWO4 nanorods: synthesis and its enhanced photocatalysis in visible light. CrystEngComm 14:15 (2012), 5065–5070.
-
(2012)
CrystEngComm
, vol.14
, Issue.15
, pp. 5065-5070
-
-
Wang, Y.1
-
36
-
-
84876575064
-
Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism
-
[36] Fu, J., et al. Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 1:9 (2013), 3083–3090.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.9
, pp. 3083-3090
-
-
Fu, J.1
-
37
-
-
84937234349
-
4 nanospheres via copolymerization for photocatalytic hydrogen evolution
-
4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem. Commun. 51:47 (2015), 9706–9709.
-
(2015)
Chem. Commun.
, vol.51
, Issue.47
, pp. 9706-9709
-
-
Zheng, D.1
-
38
-
-
54049153179
-
Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts
-
[38] Thomas, A., et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18:41 (2008), 4893–4908.
-
(2008)
J. Mater. Chem.
, vol.18
, Issue.41
, pp. 4893-4908
-
-
Thomas, A.1
-
39
-
-
69949171130
-
4 fabricated by directly heating melamine
-
4 fabricated by directly heating melamine. Langmuir 25:17 (2009), 10397–10401.
-
(2009)
Langmuir
, vol.25
, Issue.17
, pp. 10397-10401
-
-
Yan, S.C.1
Li, Z.S.2
Zou, Z.G.3
-
40
-
-
57249084293
-
Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine
-
[40] Li, X., et al. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A 94:2 (2009), 387–392.
-
(2009)
Appl. Phys. A
, vol.94
, Issue.2
, pp. 387-392
-
-
Li, X.1
-
41
-
-
80955180988
-
Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine
-
[41] Yang, J., et al. Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine. Appl. Phys. A 105:1 (2011), 161–166.
-
(2011)
Appl. Phys. A
, vol.105
, Issue.1
, pp. 161-166
-
-
Yang, J.1
-
42
-
-
84886031016
-
4 nanopowders by low temperature thermal condensation of melamine
-
4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep., 3, 2013, 1943.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1943
-
-
Zhang, Y.1
-
43
-
-
0042299282
-
A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA
-
[43] Stradella, L., Argentero, M., A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA. Thermochim. Acta 219 (1993), 315–323.
-
(1993)
Thermochim. Acta
, vol.219
, pp. 315-323
-
-
Stradella, L.1
Argentero, M.2
-
44
-
-
81855172052
-
Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity
-
[44] Liu, J., et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21:38 (2011), 14398–14401.
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.38
, pp. 14398-14401
-
-
Liu, J.1
-
45
-
-
0031858659
-
Determination of melamine derivatives: melame, meleme, ammeline and ammelide by high-performance cation-exchange chromatography
-
[45] Ono, S., et al. Determination of melamine derivatives: melame, meleme, ammeline and ammelide by high-performance cation-exchange chromatography. J. Chromatogr. A 815:2 (1998), 197–204.
-
(1998)
J. Chromatogr. A
, vol.815
, Issue.2
, pp. 197-204
-
-
Ono, S.1
-
46
-
-
0000612371
-
Melamine and derivatives of melamine
-
[46] Bann, B., Miller, S.A., Melamine and derivatives of melamine. Chem. Rev. 58:1 (1958), 131–172.
-
(1958)
Chem. Rev.
, vol.58
, Issue.1
, pp. 131-172
-
-
Bann, B.1
Miller, S.A.2
-
47
-
-
34250087862
-
Thermal behaviour of melamine
-
[47] Costa, L., Camino, G., Thermal behaviour of melamine. J. Therm. Anal. 34:2 (1988), 423–429.
-
(1988)
J. Therm. Anal.
, vol.34
, Issue.2
, pp. 423-429
-
-
Costa, L.1
Camino, G.2
-
48
-
-
84865160493
-
Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production
-
[48] Zhang, Y., et al. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4:17 (2012), 5300–5303.
-
(2012)
Nanoscale
, vol.4
, Issue.17
, pp. 5300-5303
-
-
Zhang, Y.1
-
49
-
-
84886402117
-
Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity
-
[49] Jiang, D., et al. Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity. Dalton Trans. 42:44 (2013), 15726–15734.
-
(2013)
Dalton Trans.
, vol.42
, Issue.44
, pp. 15726-15734
-
-
Jiang, D.1
-
50
-
-
79959793041
-
Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis
-
[50] Sheng, Z.-H., et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:6 (2011), 4350–4358.
-
(2011)
ACS Nano
, vol.5
, Issue.6
, pp. 4350-4358
-
-
Sheng, Z.-H.1
-
51
-
-
84884174923
-
Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications
-
[51] Tyborski, T., et al. Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications. J. Phys.: Condens. Matter, 25(39), 2013, 395402.
-
(2013)
J. Phys.: Condens. Matter
, vol.25
, Issue.39
, pp. 395402
-
-
Tyborski, T.1
-
52
-
-
34250342222
-
Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer
-
[52] Lotsch, B.V., et al. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chem. Eur. J. 13:17 (2007), 4969–4980.
-
(2007)
Chem. Eur. J.
, vol.13
, Issue.17
, pp. 4969-4980
-
-
Lotsch, B.V.1
-
53
-
-
55949129114
-
Angle-dependent XPS analysis of silicon nitride film deposited on screen-printed crystalline silicon solar cell
-
[53] Singh, P., et al. Angle-dependent XPS analysis of silicon nitride film deposited on screen-printed crystalline silicon solar cell. Sol. Energy Mater. Sol. Cells 93:1 (2009), 19–24.
-
(2009)
Sol. Energy Mater. Sol. Cells
, vol.93
, Issue.1
, pp. 19-24
-
-
Singh, P.1
-
54
-
-
84908173320
-
XPS and AES studies of UHTC ZrB2–SiC–Si3N4 treated with solar energy
-
[54] Beche, E., et al. XPS and AES studies of UHTC ZrB2–SiC–Si3N4 treated with solar energy. Surf. Interface Anal. 46:10–11 (2014), 817–822.
-
(2014)
Surf. Interface Anal.
, vol.46
, Issue.10-11
, pp. 817-822
-
-
Beche, E.1
-
55
-
-
12044253618
-
Carbon nitride deposited using energetic species: a two-phase system
-
[55] Marton, D., et al. Carbon nitride deposited using energetic species: a two-phase system. Phys. Rev. Lett. 73:1 (1994), 118–121.
-
(1994)
Phys. Rev. Lett.
, vol.73
, Issue.1
, pp. 118-121
-
-
Marton, D.1
-
56
-
-
0041687998
-
Synthesis and characterization of C3N4 hard films
-
[56] Gu, Y., et al. Synthesis and characterization of C3N4 hard films. Sci. China Ser. A: Math. 43:2 (2000), 185–198.
-
(2000)
Sci. China Ser. A: Math.
, vol.43
, Issue.2
, pp. 185-198
-
-
Gu, Y.1
-
57
-
-
0036533360
-
Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin
-
[57] Raymundo-Piñero, E., et al. Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40:4 (2002), 597–608.
-
(2002)
Carbon
, vol.40
, Issue.4
, pp. 597-608
-
-
Raymundo-Piñero, E.1
-
58
-
-
66449118468
-
Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
-
[58] Wei, D., et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9:5 (2009), 1752–1758.
-
(2009)
Nano Lett.
, vol.9
, Issue.5
, pp. 1752-1758
-
-
Wei, D.1
-
59
-
-
84880135019
-
Optimization, structural, spectroscopic and magnetic studies on stable akaganeite nanoparticles via co-precipitation method
-
[59] Parameshwari, R., Priyadarshini, P., Chandrasekaran, G., Optimization, structural, spectroscopic and magnetic studies on stable akaganeite nanoparticles via co-precipitation method. Am. J. Mater. Sci. 1:1 (2011), 18–25.
-
(2011)
Am. J. Mater. Sci.
, vol.1
, Issue.1
, pp. 18-25
-
-
Parameshwari, R.1
Priyadarshini, P.2
Chandrasekaran, G.3
-
60
-
-
7044220804
-
Thermal decomposition (pyrolysis) of urea in an open reaction vessel
-
[60] Schaber, P.M., et al. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424:1–2 (2004), 131–142.
-
(2004)
Thermochim. Acta
, vol.424
, Issue.1-2
, pp. 131-142
-
-
Schaber, P.M.1
-
61
-
-
34247330570
-
Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell
-
[61] Kim, M., Hwang, S., Yu, J.-S., Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 17:17 (2007), 1656–1659.
-
(2007)
J. Mater. Chem.
, vol.17
, Issue.17
, pp. 1656-1659
-
-
Kim, M.1
Hwang, S.2
Yu, J.-S.3
-
62
-
-
53849099698
-
Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride
-
[62] Bojdys, M.J., et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14:27 (2008), 8177–8182.
-
(2008)
Chem. Eur. J.
, vol.14
, Issue.27
, pp. 8177-8182
-
-
Bojdys, M.J.1
-
63
-
-
0042388623
-
Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-State NMR, and theoretical studies
-
[63] Jürgens, B., et al. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-State NMR, and theoretical studies. J. Am. Chem. Soc. 125:34 (2003), 10288–10300.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, Issue.34
, pp. 10288-10300
-
-
Jürgens, B.1
-
64
-
-
84910128084
-
4 limit visible light driven hydrogen evolution and photovoltage
-
4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2:47 (2014), 20338–20344.
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.47
, pp. 20338-20344
-
-
Wu, P.1
-
65
-
-
84859234372
-
Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation
-
[65] Tyborski, T., et al. Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation. J. Phys.: Condens. Matter, 24, 2012, 162201.
-
(2012)
J. Phys.: Condens. Matter
, vol.24
, pp. 162201
-
-
Tyborski, T.1
-
66
-
-
84944813256
-
Ueber die Zersetzung des Harnstoffs und der Harnsäure durch höhere Temperatur
-
[66] Wöhler, F., Ueber die Zersetzung des Harnstoffs und der Harnsäure durch höhere Temperatur. Ann. Phys. 91:4 (1829), 619–630.
-
(1829)
Ann. Phys.
, vol.91
, Issue.4
, pp. 619-630
-
-
Wöhler, F.1
-
67
-
-
33646061623
-
From triazines to heptazines: novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials
-
[67] Lotsch, B.V., Schnick, W., From triazines to heptazines: novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater. 18:7 (2006), 1891–1900.
-
(2006)
Chem. Mater.
, vol.18
, Issue.7
, pp. 1891-1900
-
-
Lotsch, B.V.1
Schnick, W.2
-
68
-
-
84859261207
-
Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts
-
[68] Zhang, G., et al. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 22:16 (2012), 8083–8091.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.16
, pp. 8083-8091
-
-
Zhang, G.1
-
69
-
-
0035120386
-
Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides
-
[69] Komatsu, T., Nakamura, T., Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides. J. Mater. Chem. 11:2 (2001), 474–478.
-
(2001)
J. Mater. Chem.
, vol.11
, Issue.2
, pp. 474-478
-
-
Komatsu, T.1
Nakamura, T.2
-
70
-
-
70349102555
-
Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism
-
[70] Yu, K., et al. Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J. Phys. Chem. A 113:37 (2009), 10024–10032.
-
(2009)
J. Phys. Chem. A
, vol.113
, Issue.37
, pp. 10024-10032
-
-
Yu, K.1
-
71
-
-
2442671007
-
Highly selective deethylation of rhodamine B: adsorption and photoocidation pathways of the dye on the TiO2/SiO2 composite photocatalyst
-
[71] Chen, F., et al. Highly selective deethylation of rhodamine B: adsorption and photoocidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int. J. Photoenergy 5 (2003), 209–217.
-
(2003)
Int. J. Photoenergy
, vol.5
, pp. 209-217
-
-
Chen, F.1
-
72
-
-
84934876509
-
Facile synthesis of BiOBr/Bi2WO6 heterojunction semiconductors with high visible-light-driven photocatalytic activity
-
[72] Meng, X., Zhang, Z., Facile synthesis of BiOBr/Bi2WO6 heterojunction semiconductors with high visible-light-driven photocatalytic activity. J. Photochem. Photobiology A: Chem. 310 (2015), 33–44.
-
(2015)
J. Photochem. Photobiology A: Chem.
, vol.310
, pp. 33-44
-
-
Meng, X.1
Zhang, Z.2
-
73
-
-
77249165701
-
Microwave synthesis of znxCd1-xS nanorods and their photocatalytic activity under visible light
-
[73] Li, W., et al. Microwave synthesis of znxCd1-xS nanorods and their photocatalytic activity under visible light. J. Phys. Chem. C 114:5 (2010), 2154–2159.
-
(2010)
J. Phys. Chem. C
, vol.114
, Issue.5
, pp. 2154-2159
-
-
Li, W.1
-
74
-
-
0032583652
-
Photocatalytic reduction of nitrate ions on TiO2 by oxalic acid
-
[74] Li, Y., Wasgestian, F., Photocatalytic reduction of nitrate ions on TiO2 by oxalic acid. J. Photochem. Photobiol. A: Chem. 112:2-3 (1998), 255–259.
-
(1998)
J. Photochem. Photobiol. A: Chem.
, vol.112
, Issue.2-3
, pp. 255-259
-
-
Li, Y.1
Wasgestian, F.2
-
75
-
-
0032795467
-
Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange II
-
[75] Bandara, J., Kiwi, J., Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange II. New J. Chem. 23:7 (1999), 717–724.
-
(1999)
New J. Chem.
, vol.23
, Issue.7
, pp. 717-724
-
-
Bandara, J.1
Kiwi, J.2
-
76
-
-
0023062822
-
Laser flash photokinetic studies of rose benagl sensitized photodynamic interactions of nucleotides and DNA
-
[76] Lee, P.C.C., Rodgers, M.A.J., Laser flash photokinetic studies of rose benagl sensitized photodynamic interactions of nucleotides and DNA. Photochem. Photobiol. 45:1 (1987), 79–86.
-
(1987)
Photochem. Photobiol.
, vol.45
, Issue.1
, pp. 79-86
-
-
Lee, P.C.C.1
Rodgers, M.A.J.2
-
77
-
-
17444377868
-
Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7
-
[77] Chen, Y., et al. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobiol. A: Chem. 172:1 (2005), 47–54.
-
(2005)
J. Photochem. Photobiol. A: Chem.
, vol.172
, Issue.1
, pp. 47-54
-
-
Chen, Y.1
-
78
-
-
84940954055
-
A study on the degradation of carbamazepine and ibuprofen by TiO 2 & ZnO photocatalysis upon UV/visible-light irradiation
-
[78] Georgaki, I., Vasilaki, E., Katsarakis, N., A study on the degradation of carbamazepine and ibuprofen by TiO 2 & ZnO photocatalysis upon UV/visible-light irradiation. Am. J. Anal. Chem., 2014, 2014.
-
(2014)
Am. J. Anal. Chem.
, vol.2014
-
-
Georgaki, I.1
Vasilaki, E.2
Katsarakis, N.3
-
79
-
-
79954603870
-
On the electronic structures and electron affinities of the m-benzoquinone (BQ) diradical and the o-, p-BQ molecules: a synergetic photoelectron spectroscopic and theoretical study
-
[79] Fu, Q., Yang, J., Wang, X.-B., On the electronic structures and electron affinities of the m-benzoquinone (BQ) diradical and the o-, p-BQ molecules: a synergetic photoelectron spectroscopic and theoretical study. J. Phys. Chem. A 115:15 (2011), 3201–3207.
-
(2011)
J. Phys. Chem. A
, vol.115
, Issue.15
, pp. 3201-3207
-
-
Fu, Q.1
Yang, J.2
Wang, X.-B.3
|