메뉴 건너뛰기




Volumn 9, Issue 9, 2016, Pages 4344-4351

An Investigation Into Machine Learning Regression Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement

Author keywords

Disease severity; disease symptoms; Gaussian process regression (GPR); hyperspectral measurement; plant disease; PLSR; wheat leaf rust (WLR); support vector regression ( SVR)

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHEMICAL DETECTION; GROUND PENETRATING RADAR SYSTEMS; LEARNING ALGORITHMS; LEAST SQUARES APPROXIMATIONS; MEAN SQUARE ERROR; PLANTS (BOTANY); REGRESSION ANALYSIS; SAMPLING; VEGETATION;

EID: 84981314135     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2575360     Document Type: Article
Times cited : (145)

References (42)
  • 1
    • 77950515899 scopus 로고    scopus 로고
    • A review of advanced techniques for detecting plant diseases
    • S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, "A review of advanced techniques for detecting plant diseases," Comput. Electron. Agriculture, vol. 72, no. 1, pp. 1-13, 2010.
    • (2010) Comput. Electron. Agriculture , vol.72 , Issue.1 , pp. 1-13
    • Sankaran, S.1    Mishra, A.2    Ehsani, R.3    Davis, C.4
  • 2
    • 0027788368 scopus 로고
    • In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation
    • C. Buschmann and E. Nagel, "In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation," Int. J. Remote Sens., vol. 14, no. 4, pp. 711-722, 1993.
    • (1993) Int. J. Remote Sens. , vol.14 , Issue.4 , pp. 711-722
    • Buschmann, C.1    Nagel, E.2
  • 3
    • 84910048992 scopus 로고    scopus 로고
    • Using boruta-selected spectroscopic wavebands for the asymptomatic detection of fusarium circinatum stress
    • Sep.
    • N. K. Poona and R. Ismail, "Using Boruta-selected spectroscopic wavebands for the asymptomatic detection of Fusarium circinatum stress," IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 9, pp. 3764-3772, Sep. 2014.
    • (2014) IEEE J. Select. Topics Appl. Earth Observations Remote Sens. , vol.7 , Issue.9 , pp. 3764-3772
    • Poona, N.K.1    Ismail, R.2
  • 4
    • 84920945902 scopus 로고    scopus 로고
    • Integrating remotely sensed and meteorological observations to forecast wheat powdery mildew at a regional scale
    • J. Zhang, R. Pu, L. Yuan, W. Huang, C. Nie, and G. Yang, "Integrating remotely sensed and meteorological observations to forecast wheat powdery mildew at a regional scale," IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 11, pp. 4328-4339, 2014.
    • (2014) IEEE J. Select. Topics Appl. Earth Observations Remote Sens. , vol.7 , Issue.11 , pp. 4328-4339
    • Zhang, J.1    Pu, R.2    Yuan, L.3    Huang, W.4    Nie, C.5    Yang, G.6
  • 5
    • 84905914543 scopus 로고    scopus 로고
    • New optimized spectral indices for identifying and monitoring winter wheat diseases
    • Jun.
    • W. Huang et al., "New optimized spectral indices for identifying and monitoring winter wheat diseases," IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 6, pp. 2516-2524, Jun. 2014.
    • (2014) IEEE J. Select. Topics Appl. Earth Observations Remote Sens. , vol.7 , Issue.6 , pp. 2516-2524
    • Huang, W.1
  • 6
    • 49749099566 scopus 로고    scopus 로고
    • Wheat leaf rust caused by puccinia triticina
    • M. D. Bolton, J. A. Kolmer, and D. F. Garvin, "Wheat leaf rust caused by Puccinia triticina," Molecular Plant Pathology, vol. 9, no. 5, pp. 563-575, 2008.
    • (2008) Molecular Plant Pathology , vol.9 , Issue.5 , pp. 563-575
    • Bolton, M.D.1    Kolmer, J.A.2    Garvin, D.F.3
  • 7
    • 11144349517 scopus 로고    scopus 로고
    • Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status
    • C. Robert, M.-O. Bancal, B. Ney, and C. Lannou, "Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status," New Phytologist, vol. 165, no. 1, pp. 227-241, 2005.
    • (2005) New Phytologist , vol.165 , Issue.1 , pp. 227-241
    • Robert, C.1    Bancal, M.-O.2    Ney, B.3    Lannou, C.4
  • 8
    • 84982607064 scopus 로고
    • Use of multispectral radiometry in wheat yellow rust experiments
    • J. G. Hansen, "Use of multispectral radiometry in wheat yellow rust experiments," EPPO Bull., vol. 21, pp. 651-658, 1991.
    • (1991) EPPO Bull. , vol.21 , pp. 651-658
    • Hansen, J.G.1
  • 9
    • 35948985621 scopus 로고    scopus 로고
    • Identification of yellowrust inwheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
    • nos
    • W. Huang, D.W. Lamb, Z. Niu, Y. Zhang, L. Liu, and J. Wang, "Identification of yellowrust inwheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging," Precision Agriculture, vol. 8, nos. 4/5, pp. 187-197, 2007.
    • (2007) Precision Agriculture , vol.8 , Issue.4-5 , pp. 187-197
    • Huang, W.1    Lamb, D.W.2    Niu, Z.3    Zhang, Y.4    Liu, L.5    Wang, J.6
  • 10
    • 84863114217 scopus 로고    scopus 로고
    • Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses
    • J. Zhang, R. Pu, W. Huang, L. Yuan, J. Luo, and J. Wang, "Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses," Field Crops Res., vol. 134, pp. 165-174, 2012.
    • (2012) Field Crops Res. , vol.134 , pp. 165-174
    • Zhang, J.1    Pu, R.2    Huang, W.3    Yuan, L.4    Luo, J.5    Wang, J.6
  • 11
    • 34447249762 scopus 로고    scopus 로고
    • Multi-temporal wheat disease detection bymultispectral remote sensing
    • J. Franke and G. Menz, "Multi-temporal wheat disease detection bymultispectral remote sensing," Precision Agriculture, vol. 8, no. 3, pp. 161-172, 2007.
    • (2007) Precision Agriculture , vol.8 , Issue.3 , pp. 161-172
    • Franke, J.1    Menz, G.2
  • 12
    • 84986879786 scopus 로고    scopus 로고
    • Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements
    • D. Ashourloo, M. R. Mobasheri, and A. Huete, "Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements," Remote Sens., vol. 6, no. 6, pp. 5107-5123, 2014.
    • (2014) Remote Sens. , vol.6 , Issue.6 , pp. 5107-5123
    • Ashourloo, D.1    Mobasheri, M.R.2    Huete, A.3
  • 13
    • 84901395113 scopus 로고    scopus 로고
    • Developing two spectral disease indices for detection of wheat leaf rust (Puccinia triticina)
    • D. Ashourloo, M. R. Mobasheri, and A. Huete, "Developing two spectral disease indices for detection of wheat leaf rust (Puccinia triticina)," Remote Sens., vol. 6, no. 6, pp. 4723-4740, 2014.
    • (2014) Remote Sens. , vol.6 , Issue.6 , pp. 4723-4740
    • Ashourloo, D.1    Mobasheri, M.R.2    Huete, A.3
  • 14
    • 77954143049 scopus 로고    scopus 로고
    • Spectral signatures of sugar beet leaves for the detection and differentiation of diseases
    • A.-K. Mahlein, U. Steiner, H.-W. Dehne, and E.-C. Oerke, "Spectral signatures of sugar beet leaves for the detection and differentiation of diseases," Precision Agriculture, vol. 11, no. 4, pp. 413-431, 2010.
    • (2010) Precision Agriculture , vol.11 , Issue.4 , pp. 413-431
    • Mahlein, A.-K.1    Steiner, U.2    Dehne, H.-W.3    Oerke, E.-C.4
  • 15
    • 79956085996 scopus 로고    scopus 로고
    • Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing
    • C. Ryu, M. Suguri, and M. Umeda, "Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing," Field Crops Res., vol. 122, no. 3, pp. 214-224, 2011.
    • (2011) Field Crops Res. , vol.122 , Issue.3 , pp. 214-224
    • Ryu, C.1    Suguri, M.2    Umeda, M.3
  • 16
    • 84897585295 scopus 로고    scopus 로고
    • Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements
    • M. Mirzaie, R. Darvishzadeh, A. Shakiba, A. Matkan, C. Atzberger, and A. Skidmore, "Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements," Int. J. Appl. Earth Observation Geoinform., vol. 26, pp. 1-11, 2014.
    • (2014) Int. J. Appl. Earth Observation Geoinform. , vol.26 , pp. 1-11
    • Mirzaie, M.1    Darvishzadeh, R.2    Shakiba, A.3    Matkan, A.4    Atzberger, C.5    Skidmore, A.6
  • 17
    • 83455181750 scopus 로고    scopus 로고
    • Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for sentinel-2 and-3
    • J. Verrelst et al., "Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for sentinel-2 and-3," Remote Sens. Environ., vol. 118, pp. 127-139, 2012.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 127-139
    • Verrelst, J.1
  • 20
    • 77956892823 scopus 로고    scopus 로고
    • Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
    • T. Rumpf, A.-K. Mahlein, U. Steiner, E.-C. Oerke, H.-W. Dehne, and L. Plümer, "Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance," Comput. Electron. Agriculture, vol. 74, no. 1, pp. 91-99, 2010.
    • (2010) Comput. Electron. Agriculture , vol.74 , Issue.1 , pp. 91-99
    • Rumpf, T.1    Mahlein, A.-K.2    Steiner, U.3    Oerke, E.-C.4    Dehne, H.-W.5    Plümer, L.6
  • 21
    • 11044235779 scopus 로고    scopus 로고
    • Application of PLS and back-propagation neural networks for the estimation of soil properties
    • Z. Ramadan, P. K. Hopke, M. J. Johnson, and K. M. Scow, "Application of PLS and back-propagation neural networks for the estimation of soil properties," Chemometrics Intell. Laboratory Syst., vol. 75, no. 1, pp. 23-30, 2005.
    • (2005) Chemometrics Intell. Laboratory Syst. , vol.75 , Issue.1 , pp. 23-30
    • Ramadan, Z.1    Hopke, P.K.2    Johnson, M.J.3    Scow, K.M.4
  • 22
    • 84987957311 scopus 로고    scopus 로고
    • Estimating fractional shrub cover using simulated EnMAP data: A comparison of three machine learning regression techniques
    • M. Schwieder, P. J. Leitão, S. Suess, C. Senf, and P. Hostert, "Estimating fractional shrub cover using simulated EnMAP data: A comparison of three machine learning regression techniques," Remote Sens., vol. 6, no. 4, pp. 3427-3445, 2014.
    • (2014) Remote Sens. , vol.6 , Issue.4 , pp. 3427-3445
    • Schwieder, M.1    Leitão, P.J.2    Suess, S.3    Senf, C.4    Hostert, P.5
  • 24
    • 0345591924 scopus 로고
    • Smoothing and differentiation of data by simplified least square procedure
    • J. Steinier, Y. Termonia, and J. Deltour, "Smoothing and differentiation of data by simplified least square procedure," Anal. Chem., vol. 44, no. 11, pp. 1906-1909, 1972.
    • (1972) Anal. Chem. , vol.44 , Issue.11 , pp. 1906-1909
    • Steinier, J.1    Termonia, Y.2    Deltour, J.3
  • 26
    • 84943165506 scopus 로고    scopus 로고
    • Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust puccinia triticina
    • M. Dmochowska-Boguta et al., "Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina," BMC Genomics, vol. 16, no. 1, 2015, Art. no. 742.
    • (2015) BMC Genomics , vol.16 , Issue.1
    • Dmochowska-Boguta, M.1
  • 27
    • 0038027191 scopus 로고    scopus 로고
    • Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study
    • T. Udelhoven, C. Emmerling, and T. Jarmer, "Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study," Plant Soil, vol. 251, no. 2, pp. 319-329, 2003.
    • (2003) Plant Soil , vol.251 , Issue.2 , pp. 319-329
    • Udelhoven, T.1    Emmerling, C.2    Jarmer, T.3
  • 28
    • 34447526307 scopus 로고    scopus 로고
    • Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN)
    • J. Farifteh, F. Van der Meer, C. Atzberger, and E. Carranza, "Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN)," Remote Sens. Environ., vol. 110, no. 1, pp. 59-78, 2007.
    • (2007) Remote Sens. Environ. , vol.110 , Issue.1 , pp. 59-78
    • Farifteh, J.1    Van Der-Meer, F.2    Atzberger, C.3    Carranza, E.4
  • 30
    • 84904498392 scopus 로고    scopus 로고
    • A comparison of advanced regression algorithms for quantifying urban land cover
    • A. Okujeni, S. Van der Linden, B. Jakimow, A. Rabe, J. Verrelst, and P. Hostert, "A comparison of advanced regression algorithms for quantifying urban land cover," Remote Sens., vol. 6, no. 7, pp. 6324-6346, 2014.
    • (2014) Remote Sens. , vol.6 , Issue.7 , pp. 6324-6346
    • Okujeni, A.1    Van Der-Linden, S.2    Jakimow, B.3    Rabe, A.4    Verrelst, J.5    Hostert, P.6
  • 31
    • 0038895405 scopus 로고    scopus 로고
    • Training v-support vector regression: Theory and algorithms
    • C.-C. Chang and C.-J. Lin, "Training v-support vector regression: Theory and algorithms," Neural Comput., vol. 14, no. 8, pp. 1959-1977, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1959-1977
    • Chang, C.-C.1    Lin, C.-J.2
  • 32
    • 84897786509 scopus 로고    scopus 로고
    • Support vector regression to forecast the demand and supply of pulpwood
    • V. Anandhi and R. M. Chezian, "Support vector regression to forecast the demand and supply of pulpwood," Int. J. Future Comput. Commun., vol. 2, no. 3, pp. 266-269, 2013.
    • (2013) Int. J. Future Comput. Commun. , vol.2 , Issue.3 , pp. 266-269
    • Anandhi, V.1    Chezian, R.M.2
  • 33
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S. S. Keerthi and C.-J. Lin, "Asymptotic behaviors of support vector machines with Gaussian kernel," Neural Comput., vol. 15, no. 7, pp. 1667-1689, 2003.
    • (2003) Neural Comput. , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 34
    • 84864350958 scopus 로고    scopus 로고
    • An enhanced MEMS error modeling approach based on nu-support vector regression
    • D. Bhatt, P. Aggarwal, P. Bhattacharya, and V. Devabhaktuni, "An enhanced MEMS error modeling approach based on nu-support vector regression," Sensors, vol. 12, no. 7, pp. 9448-9466, 2012.
    • (2012) Sensors , vol.12 , Issue.7 , pp. 9448-9466
    • Bhatt, D.1    Aggarwal, P.2    Bhattacharya, P.3    Devabhaktuni, V.4
  • 35
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C.-C. Chang and C.-J. Lin, "Libsvm: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011, Art. no. 27.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3
    • Chang, C.-C.1    Lin, C.-J.2
  • 36
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Statist. Comput., vol. 14, no. 3, pp. 199-222, 2004.
    • (2004) Statist. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 37
    • 77952270536 scopus 로고    scopus 로고
    • Bandwidth prediction based on nu-support vector regression and parallel hybrid particle swarm optimization
    • L. Hu, X. Che, and X. Cheng, "Bandwidth prediction based on nu-support vector regression and parallel hybrid particle swarm optimization," Int. J. Comput. Intell. Syst., vol. 3, no. 1, pp. 70-83, 2010.
    • (2010) Int. J. Comput. Intell. Syst. , vol.3 , Issue.1 , pp. 70-83
    • Hu, L.1    Che, X.2    Cheng, X.3
  • 39
    • 84860332507 scopus 로고    scopus 로고
    • Retrieval of vegetation biophysical parameters using Gaussian process techniques
    • May
    • J. Verrelst, L. Alonso, G. Camps-Valls, J. Delegido, and J. Moreno, "Retrieval of vegetation biophysical parameters using Gaussian process techniques," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1832-1843, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1832-1843
    • Verrelst, J.1    Alonso, L.2    Camps-Valls, G.3    Delegido, J.4    Moreno, J.5
  • 40
    • 79551489429 scopus 로고    scopus 로고
    • Gaussian processes for machine learning (GPML) toolbox
    • C. E. Rasmussen and H. Nickisch, "Gaussian processes for machine learning (GPML) toolbox," J. Mach. Learn., Res., vol. 11, pp. 3011-3015, 2010.
    • (2010) J. Mach. Learn., Res. , vol.11 , pp. 3011-3015
    • Rasmussen, C.E.1    Nickisch, H.2
  • 42
    • 84922440727 scopus 로고    scopus 로고
    • Stellar atmospheric parameter estimation using Gaussian process regression
    • Y. Bu and J. Pan, "Stellar atmospheric parameter estimation using Gaussian process regression," Monthly Notices Roy. Astron. Soc., vol. 447, no. 1, pp. 256-265, 2015.
    • (2015) Monthly Notices Roy. Astron. Soc. , vol.447 , Issue.1 , pp. 256-265
    • Bu, Y.1    Pan, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.