-
1
-
-
84892795827
-
Breast cancer statistics, 2013
-
[1] DeSantis, C., Ma, J., Bryan, L., Jemal, A., Breast cancer statistics, 2013. CA Cancer J. Clin. 64 (2014), 52–62.
-
(2014)
CA Cancer J. Clin.
, vol.64
, pp. 52-62
-
-
DeSantis, C.1
Ma, J.2
Bryan, L.3
Jemal, A.4
-
2
-
-
84904903076
-
Female breast cancer in Europe: statistics, diagnosis and treatment modalities
-
[2] Zagouri, F., Sergentanis, T.N., Tsigginou, A., Dimitrakakis, C., Zografos, G.C., Dimopoulos, M.A., Psaltopoulou, T., Female breast cancer in Europe: statistics, diagnosis and treatment modalities. J. Thorac. Dis. 6 (2014), 589–590.
-
(2014)
J. Thorac. Dis.
, vol.6
, pp. 589-590
-
-
Zagouri, F.1
Sergentanis, T.N.2
Tsigginou, A.3
Dimitrakakis, C.4
Zografos, G.C.5
Dimopoulos, M.A.6
Psaltopoulou, T.7
-
3
-
-
84900470680
-
Female breast cancer statistics of 2010 in China: estimates based on data from 145 population-based cancer registries
-
[3] Zeng, H., Zheng, R., Zhang, S., Zou, X., Chen, W., Female breast cancer statistics of 2010 in China: estimates based on data from 145 population-based cancer registries. J. Thorac. Dis. 6 (2014), 466–470.
-
(2014)
J. Thorac. Dis.
, vol.6
, pp. 466-470
-
-
Zeng, H.1
Zheng, R.2
Zhang, S.3
Zou, X.4
Chen, W.5
-
4
-
-
0037441856
-
Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193)
-
[4] Sledge, G.W., Neuberg, D., Bernardo, P., Ingle, J.N., Martino, S., Rowinsky, E.K., Wood, W.C., Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). J. Clin. Oncol. 21 (2003), 588–592.
-
(2003)
J. Clin. Oncol.
, vol.21
, pp. 588-592
-
-
Sledge, G.W.1
Neuberg, D.2
Bernardo, P.3
Ingle, J.N.4
Martino, S.5
Rowinsky, E.K.6
Wood, W.C.7
-
5
-
-
44049100934
-
Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy
-
[5] Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, S.G., Pavlick, A., Zhang, X., Chamness, G.C., Wong, H., Rosen, J., Chang, J.C., Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100 (2008), 672–679.
-
(2008)
J. Natl. Cancer Inst.
, vol.100
, pp. 672-679
-
-
Li, X.1
Lewis, M.T.2
Huang, J.3
Gutierrez, C.4
Osborne, C.K.5
Wu, M.F.6
Hilsenbeck, S.G.7
Pavlick, A.8
Zhang, X.9
Chamness, G.C.10
Wong, H.11
Rosen, J.12
Chang, J.C.13
-
6
-
-
85015484991
-
Role of microRNAs in chemoresistance
-
[6] Magee, P., Shi, L., Garofalo, M., Role of microRNAs in chemoresistance. Ann. Transl. Med., 3, 2015, 332.
-
(2015)
Ann. Transl. Med.
, vol.3
, pp. 332
-
-
Magee, P.1
Shi, L.2
Garofalo, M.3
-
7
-
-
84945447659
-
The role of MicroRNAs in the chemoresistance of breast Cancer
-
[7] Wang, J., Yang, M., Li, Y., Han, B., The role of MicroRNAs in the chemoresistance of breast Cancer. Drug Dev. Res. 76 (2015), 368–374.
-
(2015)
Drug Dev. Res.
, vol.76
, pp. 368-374
-
-
Wang, J.1
Yang, M.2
Li, Y.3
Han, B.4
-
8
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
[8] Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 (2004), 281–297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
9
-
-
84925443004
-
miR-214 as a key hub that controls cancer networks: small player, multiple functions
-
[9] Penna, E., Orso, F., Taverna, D., miR-214 as a key hub that controls cancer networks: small player, multiple functions. J. Invest Dermatol. 135 (2015), 960–969.
-
(2015)
J. Invest Dermatol.
, vol.135
, pp. 960-969
-
-
Penna, E.1
Orso, F.2
Taverna, D.3
-
10
-
-
80755144048
-
Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase
-
[10] Derfoul, A., Juan, A.H., Difilippantonio, M.J., Palanisamy, N., Ried, T., Sartorelli, V., Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis 32 (2011), 1607–1614.
-
(2011)
Carcinogenesis
, vol.32
, pp. 1607-1614
-
-
Derfoul, A.1
Juan, A.H.2
Difilippantonio, M.J.3
Palanisamy, N.4
Ried, T.5
Sartorelli, V.6
-
11
-
-
84949656235
-
MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy
-
[11] Yu, X., Luo, A., Liu, Y., Wang, S., Li, Y., Shi, W., Liu, Z., Qu, X., MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Mol. Cancer, 14, 2015, 208.
-
(2015)
Mol. Cancer
, vol.14
, pp. 208
-
-
Yu, X.1
Luo, A.2
Liu, Y.3
Wang, S.4
Li, Y.5
Shi, W.6
Liu, Z.7
Qu, X.8
-
12
-
-
0027451668
-
p53-dependent apoptosis modulates the cytotoxicity of anticancer agents
-
[12] Lowe, S.W., Ruley, H.E., Jacks, T., Housman, D.E., p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74 (1993), 957–967.
-
(1993)
Cell
, vol.74
, pp. 957-967
-
-
Lowe, S.W.1
Ruley, H.E.2
Jacks, T.3
Housman, D.E.4
-
13
-
-
2342447397
-
The ubiquitin ligase COP1 is a critical negative regulator of p53
-
[13] Dornan, D., Wertz, I., Shimizu, H., Arnott, D., Frantz, G.D., Dowd, P., O'Rourke, K., Koeppen, H., Dixit, V.M., The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429 (2004), 86–92.
-
(2004)
Nature
, vol.429
, pp. 86-92
-
-
Dornan, D.1
Wertz, I.2
Shimizu, H.3
Arnott, D.4
Frantz, G.D.5
Dowd, P.6
O'Rourke, K.7
Koeppen, H.8
Dixit, V.M.9
-
14
-
-
5644302246
-
COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas
-
[14] Dornan, D., Bheddah, S., Newton, K., Ince, W., Frantz, G.D., Dowd, P., Koeppen, H., Dixit, V.M., French, D.M., COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res. 64 (2004), 7226–7230.
-
(2004)
Cancer Res.
, vol.64
, pp. 7226-7230
-
-
Dornan, D.1
Bheddah, S.2
Newton, K.3
Ince, W.4
Frantz, G.D.5
Dowd, P.6
Koeppen, H.7
Dixit, V.M.8
French, D.M.9
-
15
-
-
84881284780
-
MiR-21 mediates the radiation resistance of glioblastoma cells by regulating PDCD4 and hMSH2
-
[15] Chao, T.F., Xiong, H.H., Liu, W., Chen, Y., Zhang, J.X., MiR-21 mediates the radiation resistance of glioblastoma cells by regulating PDCD4 and hMSH2. J. Huazhong Univ. Sci. Technol. Med. Sci. 33 (2013), 525–529.
-
(2013)
J. Huazhong Univ. Sci. Technol. Med. Sci.
, vol.33
, pp. 525-529
-
-
Chao, T.F.1
Xiong, H.H.2
Liu, W.3
Chen, Y.4
Zhang, J.X.5
-
16
-
-
84955651157
-
SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62
-
[16] Wang, W., Liao, P., Shen, M., Chen, T., Chen, Y., Li, Y., Lin, X., Ge, X., Wang, P., SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62. Oncogene 35 (2016), 491–500.
-
(2016)
Oncogene
, vol.35
, pp. 491-500
-
-
Wang, W.1
Liao, P.2
Shen, M.3
Chen, T.4
Chen, Y.5
Li, Y.6
Lin, X.7
Ge, X.8
Wang, P.9
-
17
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
[17] Lewis, B.P., Burge, C.B., Bartel, D.P., Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120 (2005), 15–20.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
18
-
-
44149083586
-
miRDB: a microRNA target prediction and functional annotation database with a wiki interface
-
[18] Wang, X., miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14 (2008), 1012–1017.
-
(2008)
RNA
, vol.14
, pp. 1012-1017
-
-
Wang, X.1
-
19
-
-
38849145861
-
Prediction of both conserved and nonconserved microRNA targets in animals
-
[19] Wang, X., El Naqa, I.M., Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24 (2008), 325–332.
-
(2008)
Bioinformatics
, vol.24
, pp. 325-332
-
-
Wang, X.1
El Naqa, I.M.2
-
20
-
-
84874189445
-
MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells
-
[20] Wang, F., Liu, M., Li, X., Tang, H., MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett. 587 (2013), 488–495.
-
(2013)
FEBS Lett.
, vol.587
, pp. 488-495
-
-
Wang, F.1
Liu, M.2
Li, X.3
Tang, H.4
-
21
-
-
39049086391
-
MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN
-
[21] Yang, H., Kong, W., He, L., Zhao, J.J., O'Donnell, J.D., Wang, J., Wenham, R.M., Coppola, D., Kruk, P.A., Nicosia, S.V., Cheng, J.Q., MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68 (2008), 425–433.
-
(2008)
Cancer Res.
, vol.68
, pp. 425-433
-
-
Yang, H.1
Kong, W.2
He, L.3
Zhao, J.J.4
O'Donnell, J.D.5
Wang, J.6
Wenham, R.M.7
Coppola, D.8
Kruk, P.A.9
Nicosia, S.V.10
Cheng, J.Q.11
-
22
-
-
77949773251
-
MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines
-
[22] Yu, Z.W., Zhong, L.P., Ji, T., Zhang, P., Chen, W.T., Zhang, C.P., MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol. 46 (2010), 317–322.
-
(2010)
Oral Oncol.
, vol.46
, pp. 317-322
-
-
Yu, Z.W.1
Zhong, L.P.2
Ji, T.3
Zhang, P.4
Chen, W.T.5
Zhang, C.P.6
-
23
-
-
0025876591
-
The p53 tumour suppressor gene
-
[23] Levine, A.J., Momand, J., Finlay, C.A., The p53 tumour suppressor gene. Nature 351 (1991), 453–456.
-
(1991)
Nature
, vol.351
, pp. 453-456
-
-
Levine, A.J.1
Momand, J.2
Finlay, C.A.3
-
24
-
-
0037221767
-
TP53 and breast cancer
-
[24] Borresen-Dale, A.L., TP53 and breast cancer. Hum. Mutat. 21 (2003), 292–300.
-
(2003)
Hum. Mutat.
, vol.21
, pp. 292-300
-
-
Borresen-Dale, A.L.1
-
25
-
-
79551508992
-
14-3-3sigma exerts tumor-suppressor activity mediated by regulation of COP1 stability
-
[25] Su, C.H., Zhao, R., Zhang, F., Qu, C., Chen, B., Feng, Y.H., Phan, L., Chen, J., Wang, H., Wang, H., Yeung, S.C., Lee, M.H., 14-3-3sigma exerts tumor-suppressor activity mediated by regulation of COP1 stability. Cancer Res. 71 (2011), 884–894.
-
(2011)
Cancer Res.
, vol.71
, pp. 884-894
-
-
Su, C.H.1
Zhao, R.2
Zhang, F.3
Qu, C.4
Chen, B.5
Feng, Y.H.6
Phan, L.7
Chen, J.8
Wang, H.9
Wang, H.10
Yeung, S.C.11
Lee, M.H.12
-
26
-
-
78449283414
-
Definition of ubiquitination modulator COP1 as a novel therapeutic target in human hepatocellular carcinoma
-
[26] Lee, Y.H., Andersen, J.B., Song, H.T., Judge, A.D., Seo, D., Ishikawa, T., Marquardt, J.U., Kitade, M., Durkin, M.E., Raggi, C., Woo, H.G., Conner, E.A., Avital, I., Maclachlan, I., Factor, V.M., Thorgeirsson, S.S., Definition of ubiquitination modulator COP1 as a novel therapeutic target in human hepatocellular carcinoma. Cancer Res. 70 (2010), 8264–8269.
-
(2010)
Cancer Res.
, vol.70
, pp. 8264-8269
-
-
Lee, Y.H.1
Andersen, J.B.2
Song, H.T.3
Judge, A.D.4
Seo, D.5
Ishikawa, T.6
Marquardt, J.U.7
Kitade, M.8
Durkin, M.E.9
Raggi, C.10
Woo, H.G.11
Conner, E.A.12
Avital, I.13
Maclachlan, I.14
Factor, V.M.15
Thorgeirsson, S.S.16
|