메뉴 건너뛰기




Volumn 423, Issue , 2016, Pages 463-471

Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst

Author keywords

g C3N4; Heterojunction; Hybrid; Photocatalysis; FeOOH

Indexed keywords

CARBON NITRIDE; ELECTROMAGNETIC WAVE ABSORPTION; HETEROJUNCTIONS; LIGHT ABSORPTION; NITRIDES; PHOTOCATALYSIS; PHOTODEGRADATION;

EID: 84979887688     PISSN: 13811169     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.molcata.2016.07.032     Document Type: Article
Times cited : (37)

References (75)
  • 1
    • 84899873420 scopus 로고    scopus 로고
    • A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties
    • [1] Dong, G., et al. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C: Photochem. Rev. 20:0 (2014), 33–50.
    • (2014) J. Photochem. Photobiol. C: Photochem. Rev. , vol.20 , pp. 33-50
    • Dong, G.1
  • 2
    • 54049153179 scopus 로고    scopus 로고
    • Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts
    • [2] Thomas, A., et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18:41 (2008), 4893–4908.
    • (2008) J. Mater. Chem. , vol.18 , Issue.41 , pp. 4893-4908
    • Thomas, A.1
  • 3
    • 57849130247 scopus 로고    scopus 로고
    • A metal-free polymeric photocatalyst for hydrogen production from water under visible light
    • [3] Wang, X., et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8:1 (2009), 76–80.
    • (2009) Nat. Mater. , vol.8 , Issue.1 , pp. 76-80
    • Wang, X.1
  • 4
    • 77952910557 scopus 로고    scopus 로고
    • Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system
    • [4] Zhang, Y., Antonietti, M., Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system. Chem. − Asian J. 5:6 (2010), 1307–1311.
    • (2010) Chem. − Asian J. , vol.5 , Issue.6 , pp. 1307-1311
    • Zhang, Y.1    Antonietti, M.2
  • 5
    • 80955180988 scopus 로고    scopus 로고
    • Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine
    • [5] Yang, J., et al. Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine. Appl. Phys. A 105:1 (2011), 161–166.
    • (2011) Appl. Phys. A , vol.105 , Issue.1 , pp. 161-166
    • Yang, J.1
  • 6
    • 0034500326 scopus 로고    scopus 로고
    • Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor
    • [6] Gillan, E.G., Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 12:12 (2000), 3906–3912.
    • (2000) Chem. Mater. , vol.12 , Issue.12 , pp. 3906-3912
    • Gillan, E.G.1
  • 7
    • 84946088818 scopus 로고    scopus 로고
    • The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance
    • [7] F, H., et al. The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance. Chem. Commun. 51:90 (2015), 16244–16246.
    • (2015) Chem. Commun. , vol.51 , Issue.90 , pp. 16244-16246
    • F, H.1
  • 8
    • 84959323016 scopus 로고    scopus 로고
    • N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light
    • [8] Zhou, Y., et al. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 99 (2015), 111–117.
    • (2015) Carbon , vol.99 , pp. 111-117
    • Zhou, Y.1
  • 9
    • 84955617426 scopus 로고    scopus 로고
    • Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency
    • [9] Wang, X.J., et al. Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency. Int. J. Hydrogen Energy 41:6 (2016), 3888–3895.
    • (2016) Int. J. Hydrogen Energy , vol.41 , Issue.6 , pp. 3888-3895
    • Wang, X.J.1
  • 10
    • 84964304896 scopus 로고    scopus 로고
    • Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution
    • [10] Liu, Q., et al. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl. Catal. B: Environ. 193 (2016), 248–258.
    • (2016) Appl. Catal. B: Environ. , vol.193 , pp. 248-258
    • Liu, Q.1
  • 11
    • 84922792767 scopus 로고    scopus 로고
    • 2 evolution and Rhodamine B degradation under visible light
    • 2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 3:7 (2015), 3862–3867.
    • (2015) J. Mater. Chem. A , vol.3 , Issue.7 , pp. 3862-3867
    • Zhou, Y.1
  • 12
    • 84906547671 scopus 로고    scopus 로고
    • Highly efficient photocatalytic H 2 evolution from water using visible light and structure-controlled graphitic carbon nitride
    • [12] Martin, D.J., et al. Highly efficient photocatalytic H 2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 53:35 (2014), 9394–9399.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , Issue.35 , pp. 9394-9399
    • Martin, D.J.1
  • 13
    • 84966441060 scopus 로고    scopus 로고
    • Photochemical reactions of g-C3N4-based heterostructured composites in Rhodamine B degradation under visible light
    • [13] Liu, Y., Wang, J., Yang, P., Photochemical reactions of g-C3N4-based heterostructured composites in Rhodamine B degradation under visible light. RSC Adv., 6, 2016.
    • (2016) RSC Adv. , vol.6
    • Liu, Y.1    Wang, J.2    Yang, P.3
  • 14
    • 84956967512 scopus 로고    scopus 로고
    • Synthesis of MoS2 nanosheet supported Z-scheme TiO2/g-C3N4 photocatalysts for the enhanced photocatalytic degradation of organic water pollutants
    • [14] Jo, W.K., Synthesis of MoS2 nanosheet supported Z-scheme TiO2/g-C3N4 photocatalysts for the enhanced photocatalytic degradation of organic water pollutants. RSC Adv., 6, 2016.
    • (2016) RSC Adv. , vol.6
    • Jo, W.K.1
  • 15
    • 84964336294 scopus 로고    scopus 로고
    • Efficient degradation of organic pollutants and hydrogen evolution by g-C3N4 using melamine as the precursor and urea as the modifier
    • [15] Wang, P., Efficient degradation of organic pollutants and hydrogen evolution by g-C3N4 using melamine as the precursor and urea as the modifier. RSC Adv., 6, 2016.
    • (2016) RSC Adv. , vol.6
    • Wang, P.1
  • 16
    • 84938635383 scopus 로고    scopus 로고
    • Effect of acid on the photocatalytic degradation of rhodamine B over g-C 3N 4
    • [16] Fang, S., et al. Effect of acid on the photocatalytic degradation of rhodamine B over g-C 3N 4. Appl. Surf. Sci. 358 (2015), 336–342.
    • (2015) Appl. Surf. Sci. , vol.358 , pp. 336-342
    • Fang, S.1
  • 17
    • 84863104012 scopus 로고    scopus 로고
    • Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots
    • [17] Ge, L., et al. Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J. Phys. Chem. C 116:25 (2012), 13708–13714.
    • (2012) J. Phys. Chem. C , vol.116 , Issue.25 , pp. 13708-13714
    • Ge, L.1
  • 18
    • 0141749190 scopus 로고    scopus 로고
    • Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide
    • [18] Gu, Y., et al. Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide. Carbon 41:13 (2003), 2674–2676.
    • (2003) Carbon , vol.41 , Issue.13 , pp. 2674-2676
    • Gu, Y.1
  • 19
    • 84859234372 scopus 로고    scopus 로고
    • Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation
    • [19] Tyborski, T., et al. Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation. J. Phys.: Condens. Matter, 24(16), 2012, p162201.
    • (2012) J. Phys.: Condens. Matter , vol.24 , Issue.16 , pp. p162201
    • Tyborski, T.1
  • 20
    • 73349127089 scopus 로고    scopus 로고
    • Melamine–Melem adduct phases: investigating the thermal condensation of melamine
    • [20] Sattler, A., et al. Melamine–Melem adduct phases: investigating the thermal condensation of melamine. Chem.–Eur. J. 15:47 (2009), 13161–13170.
    • (2009) Chem.–Eur. J. , vol.15 , Issue.47 , pp. 13161-13170
    • Sattler, A.1
  • 21
    • 69949171130 scopus 로고    scopus 로고
    • Photodegradation performance of g-C3N4 fabricated by directly heating melamine
    • [21] Yan, S.C., Li, Z.S., Zou, Z.G., Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:17 (2009), 10397–10401.
    • (2009) Langmuir , vol.25 , Issue.17 , pp. 10397-10401
    • Yan, S.C.1    Li, Z.S.2    Zou, Z.G.3
  • 22
    • 57249084293 scopus 로고    scopus 로고
    • Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine
    • [22] Li, X., et al. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A 94:2 (2009), 387–392.
    • (2009) Appl. Phys. A , vol.94 , Issue.2 , pp. 387-392
    • Li, X.1
  • 23
    • 84886031016 scopus 로고    scopus 로고
    • Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine
    • [23] Zhang, Y., et al. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep., 3, 2013, 1943.
    • (2013) Sci. Rep. , vol.3 , pp. 1943
    • Zhang, Y.1
  • 24
    • 80053322220 scopus 로고    scopus 로고
    • Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts
    • [24] Dong, F., et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 21:39 (2011), 15171–15174.
    • (2011) J. Mater. Chem. , vol.21 , Issue.39 , pp. 15171-15174
    • Dong, F.1
  • 25
    • 84865160493 scopus 로고    scopus 로고
    • Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production
    • [25] Zhang, Y., et al. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4:17 (2012), 5300–5303.
    • (2012) Nanoscale , vol.4 , Issue.17 , pp. 5300-5303
    • Zhang, Y.1
  • 26
    • 81855172052 scopus 로고    scopus 로고
    • Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity
    • [26] Liu, J., et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21:38 (2011), 14398–14401.
    • (2011) J. Mater. Chem. , vol.21 , Issue.38 , pp. 14398-14401
    • Liu, J.1
  • 27
    • 0042299282 scopus 로고
    • A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA
    • [27] Stradella, L., Argentero, M., A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA. Thermochim. Acta 219 (1993), 315–323.
    • (1993) Thermochim. Acta , vol.219 , pp. 315-323
    • Stradella, L.1    Argentero, M.2
  • 28
    • 7044220804 scopus 로고    scopus 로고
    • Thermal decomposition (pyrolysis) of urea in an open reaction vessel
    • [28] Schaber, P.M., et al. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424:1–2 (2004), 131–142.
    • (2004) Thermochim. Acta , vol.424 , Issue.1-2 , pp. 131-142
    • Schaber, P.M.1
  • 29
    • 84908375646 scopus 로고    scopus 로고
    • 4 with high visible light activity
    • 4 with high visible light activity. J. Hazard. Mater. 280:0 (2014), 713–722.
    • (2014) J. Hazard. Mater. , vol.280 , pp. 713-722
    • Zhang, J.1
  • 30
    • 79961011952 scopus 로고    scopus 로고
    • Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4
    • [30] Wang, Y., et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4:8 (2011), 2922–2929.
    • (2011) Energy Environ. Sci. , vol.4 , Issue.8 , pp. 2922-2929
    • Wang, Y.1
  • 31
    • 84925431408 scopus 로고    scopus 로고
    • 4 nanorods
    • 4 nanorods. RSC Adv. 5:35 (2015), 27933–27939.
    • (2015) RSC Adv. , vol.5 , Issue.35 , pp. 27933-27939
    • Nong, Q.1
  • 32
    • 84926676301 scopus 로고    scopus 로고
    • Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate
    • [32] Xu, J., et al. Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Appl. Cata. A: Gen. 496 (2015), 1–8.
    • (2015) Appl. Cata. A: Gen. , vol.496 , pp. 1-8
    • Xu, J.1
  • 33
    • 79952387205 scopus 로고    scopus 로고
    • Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis
    • [33] Zhang, J., et al. Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci. 4:3 (2011), 675–678.
    • (2011) Energy Environ. Sci. , vol.4 , Issue.3 , pp. 675-678
    • Zhang, J.1
  • 34
    • 84929179220 scopus 로고    scopus 로고
    • Template synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance
    • [34] Zhao, Z., et al. Template synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Adv. 5:49 (2015), 39549–39556.
    • (2015) RSC Adv. , vol.5 , Issue.49 , pp. 39549-39556
    • Zhao, Z.1
  • 35
    • 67849122733 scopus 로고    scopus 로고
    • Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light
    • [35] Wang, X., et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131:5 (2009), 1680–1681.
    • (2009) J. Am. Chem. Soc. , vol.131 , Issue.5 , pp. 1680-1681
    • Wang, X.1
  • 36
    • 84869018933 scopus 로고    scopus 로고
    • Graphene‐like carbon nitride nanosheets for improved photocatalytic activities
    • [36] Niu, P., et al. Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22:22 (2012), 4763–4770.
    • (2012) Adv. Funct. Mater. , vol.22 , Issue.22 , pp. 4763-4770
    • Niu, P.1
  • 37
    • 84923027428 scopus 로고    scopus 로고
    • 3 nanocomposites with enhanced visible light photocatalytic activities
    • 3 nanocomposites with enhanced visible light photocatalytic activities. J. Colloid Interface Sci. 448:0 (2015), 17–23.
    • (2015) J. Colloid Interface Sci. , vol.448 , pp. 17-23
    • Wang, X.1
  • 38
    • 80055055604 scopus 로고    scopus 로고
    • Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion
    • [38] Zhang, Y., et al. Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy Environ. Sci. 4:11 (2011), 4517–4521.
    • (2011) Energy Environ. Sci. , vol.4 , Issue.11 , pp. 4517-4521
    • Zhang, Y.1
  • 39
    • 45849107009 scopus 로고    scopus 로고
    • The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses
    • John Wiley & Sons
    • [39] Cornell, R.M., Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2006, John Wiley & Sons.
    • (2006)
    • Cornell, R.M.1    Schwertmann, U.2
  • 41
    • 79960978540 scopus 로고    scopus 로고
    • Modeling the iron oxides and oxyhydroxides for the prediction of environmentally sensitive phase transformations
    • [41] Guo, H., Barnard, A.S., Modeling the iron oxides and oxyhydroxides for the prediction of environmentally sensitive phase transformations. Phys. Rev. B, 83(9), 2011, p. 094112.
    • (2011) Phys. Rev. B , vol.83 , Issue.9 , pp. p. 094112
    • Guo, H.1    Barnard, A.S.2
  • 42
    • 84916348390 scopus 로고
    • Compilation of energy band gaps in elemental and binary compound semiconductors and insulators
    • [42] Strehlow, W., Cook, E., Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2:1 (1973), 163–200.
    • (1973) J. Phys. Chem. Ref. Data , vol.2 , Issue.1 , pp. 163-200
    • Strehlow, W.1    Cook, E.2
  • 43
    • 84862735475 scopus 로고    scopus 로고
    • Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles
    • [43] El Ghandoor, H., et al. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7:6 (2012), 5734–5745.
    • (2012) Int. J. Electrochem. Sci. , vol.7 , Issue.6 , pp. 5734-5745
    • El Ghandoor, H.1
  • 44
    • 80052597348 scopus 로고    scopus 로고
    • Size-dependent bandgap of nanogoethite
    • [44] Zhang, H., et al. Size-dependent bandgap of nanogoethite. J. Phys. Chem. C 115:36 (2011), 17704–17710.
    • (2011) J. Phys. Chem. C , vol.115 , Issue.36 , pp. 17704-17710
    • Zhang, H.1
  • 45
    • 21644453231 scopus 로고    scopus 로고
    • Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments
    • [45] Sherman, D.M., Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim. Cosmochim. Acta 69:13 (2005), 3249–3255.
    • (2005) Geochim. Cosmochim. Acta , vol.69 , Issue.13 , pp. 3249-3255
    • Sherman, D.M.1
  • 46
    • 0001512047 scopus 로고    scopus 로고
    • Characterization of the surface of α-FeOOH powder by XPS
    • [46] Mansour, A., Brizzolara, R.A., Characterization of the surface of α-FeOOH powder by XPS. Surf. Sci. Spectra 4:4 (1996), 357–362.
    • (1996) Surf. Sci. Spectra , vol.4 , Issue.4 , pp. 357-362
    • Mansour, A.1    Brizzolara, R.A.2
  • 47
    • 0037215971 scopus 로고    scopus 로고
    • Some factors influencing forced hydrolysis of FeCl3 solutions
    • [47] Music, S., et al. Some factors influencing forced hydrolysis of FeCl3 solutions. Mater. Lett. 57:5-6 (2003), 1096–1102.
    • (2003) Mater. Lett. , vol.57 , Issue.5-6 , pp. 1096-1102
    • Music, S.1
  • 48
    • 84934882158 scopus 로고    scopus 로고
    • TiO2 fibers supported β-FeOOH nanostructures as efficient visible light photocatalyst and room temperature sensor
    • [48] Zhu, T., et al. TiO2 fibers supported β-FeOOH nanostructures as efficient visible light photocatalyst and room temperature sensor. Sci. Rep., 5, 2015.
    • (2015) Sci. Rep. , vol.5
    • Zhu, T.1
  • 49
    • 0142228957 scopus 로고    scopus 로고
    • Fabrication of self‐supported patterns of aligned β‐FeOOH nanowires by a low‐temperature solution reaction
    • [49] Xiong, Y., et al. Fabrication of self‐supported patterns of aligned β‐FeOOH nanowires by a low‐temperature solution reaction. Chem.—Eur. J. 9:20 (2003), 4991–4996.
    • (2003) Chem.—Eur. J. , vol.9 , Issue.20 , pp. 4991-4996
    • Xiong, Y.1
  • 50
    • 84906672719 scopus 로고    scopus 로고
    • Iron-oxide-supported nanocarbon in lithium-ion batteries: medical, catalytic, and environmental applications
    • [50] Tucek, J., et al. Iron-oxide-supported nanocarbon in lithium-ion batteries: medical, catalytic, and environmental applications. ACS Nano 8:8 (2014), 7571–7612.
    • (2014) ACS Nano , vol.8 , Issue.8 , pp. 7571-7612
    • Tucek, J.1
  • 51
    • 85027958691 scopus 로고    scopus 로고
    • State‐of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance
    • [51] Li, H., et al. State‐of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25:7 (2015), 998–1013.
    • (2015) Adv. Funct. Mater. , vol.25 , Issue.7 , pp. 998-1013
    • Li, H.1
  • 52
    • 82955217163 scopus 로고    scopus 로고
    • 2D sandwich‐like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors
    • [52] Qu, Q., Yang, S., Feng, X., 2D sandwich‐like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23:46 (2011), 5574–5580.
    • (2011) Adv. Mater. , vol.23 , Issue.46 , pp. 5574-5580
    • Qu, Q.1    Yang, S.2    Feng, X.3
  • 53
    • 84921639306 scopus 로고    scopus 로고
    • Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation
    • [53] Li, H.-J., et al. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys. 17:5 (2015), 3309–3315.
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , Issue.5 , pp. 3309-3315
    • Li, H.-J.1
  • 54
    • 84887250875 scopus 로고    scopus 로고
    • Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis
    • [54] Xu, J., et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 1:46 (2013), 14766–14772.
    • (2013) J. Mater. Chem. A , vol.1 , Issue.46 , pp. 14766-14772
    • Xu, J.1
  • 55
    • 84894425420 scopus 로고    scopus 로고
    • Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting
    • [55] Chemelewski, W.D., et al. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 136:7 (2014), 2843–2850.
    • (2014) J. Am. Chem. Soc. , vol.136 , Issue.7 , pp. 2843-2850
    • Chemelewski, W.D.1
  • 56
    • 56949104599 scopus 로고    scopus 로고
    • Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy
    • [56] Yang, D., et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:1 (2009), 145–152.
    • (2009) Carbon , vol.47 , Issue.1 , pp. 145-152
    • Yang, D.1
  • 57
    • 80052164561 scopus 로고    scopus 로고
    • Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies
    • [57] Ganguly, A., et al. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115:34 (2011), 17009–17019.
    • (2011) J. Phys. Chem. C , vol.115 , Issue.34 , pp. 17009-17019
    • Ganguly, A.1
  • 58
    • 55949129114 scopus 로고    scopus 로고
    • Angle-dependent XPS analysis of silicon nitride film deposited on screen-printed crystalline silicon solar cell
    • [58] Singh, P., et al. Angle-dependent XPS analysis of silicon nitride film deposited on screen-printed crystalline silicon solar cell. Sol. Energy Mater. Sol. Cells 93:1 (2009), 19–24.
    • (2009) Sol. Energy Mater. Sol. Cells , vol.93 , Issue.1 , pp. 19-24
    • Singh, P.1
  • 59
    • 84908173320 scopus 로고    scopus 로고
    • XPS and AES studies of UHTC ZrB2–SiC–Si3N4 treated with solar energy
    • [59] Beche, E., et al. XPS and AES studies of UHTC ZrB2–SiC–Si3N4 treated with solar energy. Surf. Interface Anal. 46:10-11 (2014), 817–822.
    • (2014) Surf. Interface Anal. , vol.46 , Issue.10-11 , pp. 817-822
    • Beche, E.1
  • 60
    • 12044253618 scopus 로고
    • Carbon nitride deposited using energetic species: a two-phase system
    • [60] Marton, D., et al. Carbon nitride deposited using energetic species: a two-phase system. Phys. Rev. Lett. 73:1 (1994), 118–121.
    • (1994) Phys. Rev. Lett. , vol.73 , Issue.1 , pp. 118-121
    • Marton, D.1
  • 61
    • 0041687998 scopus 로고    scopus 로고
    • Synthesis and characterization of C3N4 hard films
    • [61] Gu, Y., et al. Synthesis and characterization of C3N4 hard films. Sci. China Ser. A: Math. 43:2 (2000), 185–198.
    • (2000) Sci. China Ser. A: Math. , vol.43 , Issue.2 , pp. 185-198
    • Gu, Y.1
  • 62
    • 0036533360 scopus 로고    scopus 로고
    • Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin
    • [62] Raymundo-Piñero, E., et al. Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40:4 (2002), 597–608.
    • (2002) Carbon , vol.40 , Issue.4 , pp. 597-608
    • Raymundo-Piñero, E.1
  • 63
    • 66449118468 scopus 로고    scopus 로고
    • Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
    • [63] Wei, D., et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9:5 (2009), 1752–1758.
    • (2009) Nano Lett. , vol.9 , Issue.5 , pp. 1752-1758
    • Wei, D.1
  • 64
    • 6144251230 scopus 로고    scopus 로고
    • Nitrogen incorporation at Si(001)-SiO2 interfaces: relation between N 1s core-Level shifts and microscopic structure
    • [64] Rignanese, G.M., et al. Nitrogen incorporation at Si(001)-SiO2 interfaces: relation between N 1s core-Level shifts and microscopic structure. Phys. Rev. Lett. 79:25 (1997), 5174–5177.
    • (1997) Phys. Rev. Lett. , vol.79 , Issue.25 , pp. 5174-5177
    • Rignanese, G.M.1
  • 65
    • 0032179883 scopus 로고    scopus 로고
    • An XPS study of the adsorption of lead on goethite (α-FeOOH)
    • [65] Abdel-Samad, H., Watson, P.R., An XPS study of the adsorption of lead on goethite (α-FeOOH). Appl. Surf. Sci. 136:1 (1998), 46–54.
    • (1998) Appl. Surf. Sci. , vol.136 , Issue.1 , pp. 46-54
    • Abdel-Samad, H.1    Watson, P.R.2
  • 66
    • 84856938476 scopus 로고    scopus 로고
    • Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries
    • [66] Zhou, J., et al. Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv. 1:5 (2011), 782–791.
    • (2011) RSC Adv. , vol.1 , Issue.5 , pp. 782-791
    • Zhou, J.1
  • 67
    • 0033514792 scopus 로고    scopus 로고
    • Coating carboxylic acids on amorphous iron nanoparticles
    • [67] Kataby, G., et al. Coating carboxylic acids on amorphous iron nanoparticles. Langmuir 15:5 (1999), 1703–1708.
    • (1999) Langmuir , vol.15 , Issue.5 , pp. 1703-1708
    • Kataby, G.1
  • 68
    • 23144437967 scopus 로고    scopus 로고
    • Tribochemical effects on the friction and wear behaviors of diamond-like carbon film under high relative humidity condition
    • [68] Li, H., et al. Tribochemical effects on the friction and wear behaviors of diamond-like carbon film under high relative humidity condition. Tribol. Lett. 19:3 (2005), 231–238.
    • (2005) Tribol. Lett. , vol.19 , Issue.3 , pp. 231-238
    • Li, H.1
  • 69
    • 0034817262 scopus 로고    scopus 로고
    • Covalent modification of iron surfaces by electrochemical reduction of aryldiazonium salts
    • [69] Adenier, A., et al. Covalent modification of iron surfaces by electrochemical reduction of aryldiazonium salts. J. Am. Chem. Soc. 123:19 (2001), 4541–4549.
    • (2001) J. Am. Chem. Soc. , vol.123 , Issue.19 , pp. 4541-4549
    • Adenier, A.1
  • 70
    • 20044365301 scopus 로고    scopus 로고
    • Size and structure effect on optical transitions of iron oxide nanocrystals
    • [70] He, Y.et al., Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B, 71(12), 2005, 125411.
    • (2005) Phys. Rev. B , vol.71 , Issue.12 , pp. 125411
    • He, Y.E.A.1
  • 71
    • 0342265131 scopus 로고    scopus 로고
    • The absolute energy positions of conduction and valence bands of selected semiconducting minerals
    • [71] Xu, Y., Schoonen, M.A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85:4 (2000), 543–556.
    • (2000) Am. Mineral. , vol.85 , Issue.4 , pp. 543-556
    • Xu, Y.1    Schoonen, M.A.2
  • 72
    • 0032116388 scopus 로고    scopus 로고
    • Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions
    • [72] Wu, T., et al. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102:30 (1998), 5845–5851.
    • (1998) J. Phys. Chem. B , vol.102 , Issue.30 , pp. 5845-5851
    • Wu, T.1
  • 73
    • 6244304675 scopus 로고
    • Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack
    • [73] Turchi, C.S., Ollis, D.F., Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122:1 (1990), 178–192.
    • (1990) J. Catal. , vol.122 , Issue.1 , pp. 178-192
    • Turchi, C.S.1    Ollis, D.F.2
  • 74
    • 57649146915 scopus 로고    scopus 로고
    • Photocatalytic degradation of rhodamine B by Bi 2 WO 6 with electron accepting agent under microwave irradiation: mechanism and pathway
    • [74] He, Z., et al. Photocatalytic degradation of rhodamine B by Bi 2 WO 6 with electron accepting agent under microwave irradiation: mechanism and pathway. J. Hazard. Mater. 162:2 (2009), 1477–1486.
    • (2009) J. Hazard. Mater. , vol.162 , Issue.2 , pp. 1477-1486
    • He, Z.1
  • 75
    • 70349102555 scopus 로고    scopus 로고
    • Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism
    • [75] Yu, K., et al. Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J. Phys. Chem. A 113:37 (2009), 10024–10032.
    • (2009) J. Phys. Chem. A , vol.113 , Issue.37 , pp. 10024-10032
    • Yu, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.