-
2
-
-
60649115993
-
-
Berlin, Germany: Springer
-
P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta, Metalearning: Appli-cations to Data Mining. Berlin, Germany: Springer, 2009.
-
(2009)
Metalearning: Appli-cations to Data Mining
-
-
Brazdil, P.1
Carrier, C.G.2
Soares, C.3
Vilalta, R.4
-
3
-
-
0031118203
-
No free lunch theorems for optimization
-
Apr.
-
D. H.Wolpert andW. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, Apr. 1997.
-
(1997)
IEEE Trans. Evol. Comput.
, vol.1
, Issue.1
, pp. 67-82
-
-
Wolpert, D.H.1
Macready, W.G.2
-
4
-
-
0001387704
-
Classifier fitness based on accuracy
-
S.W.Wilson, "Classifier fitness based on accuracy," Evol. Comput., vol. 3, no. 2, pp. 149-175, 1995.
-
(1995)
Evol. Comput.
, vol.3
, Issue.2
, pp. 149-175
-
-
Wilson, S.W.1
-
5
-
-
80855157844
-
Metalearning
-
T. Schaul and J. Schmidhuber, "Metalearning," Scholarpedia, vol. 5, no. 6, p. 4650, 2010.
-
(2010)
Scholarpedia
, vol.5
, Issue.6
, pp. 4650
-
-
Schaul, T.1
Schmidhuber, J.2
-
6
-
-
1642379397
-
Introduction to the special issue on meta-learning
-
Mar.
-
C. Giraud-Carrier, R. Vilalta, and P. Brazdil, "Introduction to the special issue on meta-learning," Mach. Learn., vol. 54, no. 3, pp. 187-193, Mar. 2004.
-
(2004)
Mach. Learn.
, vol.54
, Issue.3
, pp. 187-193
-
-
Giraud-Carrier, C.1
Vilalta, R.2
Brazdil, P.3
-
8
-
-
9444297285
-
Meta-learning via search combined with parameter optimization
-
(Advances in Soft Computing), M. Kaopotek, S. Wierzcho, and M. Michalewicz, Eds. Heidelberg, Germany: Physica-Verlag HD
-
W. Duch and K. Grudziski, "Meta-learning via search combined with parameter optimization," in Intelligent Information Systems (Advances in Soft Computing), vol. 17, M. Kaopotek, S. Wierzcho, and M. Michalewicz, Eds. Heidelberg, Germany: Physica-Verlag HD, 2002, pp. 13-22.
-
(2002)
Intelligent Information Systems
, vol.17
, pp. 13-22
-
-
Duch, W.1
Grudziski, K.2
-
9
-
-
0037361994
-
Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
-
Mar.
-
P. B. Brazdil, C. Soares, and J. P. da Costa, "Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results," Mach. Learn., vol. 50, no. 3, pp. 251-277, Mar. 2003.
-
(2003)
Mach. Learn.
, vol.50
, Issue.3
, pp. 251-277
-
-
Brazdil, P.B.1
Soares, C.2
Da Costa, J.P.3
-
10
-
-
33845263263
-
On model selection consistency of lasso
-
Nov.
-
P. Zhao and B. Yu, "On model selection consistency of lasso," J. Mach. Learn. Res., vol. 7, pp. 2541-2563, Nov. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
11
-
-
68249088215
-
Model selection for the LS-SVM. Application to handwriting recognition
-
Dec.
-
M. M. Adankon and M. Cheriet, "Model selection for the LS-SVM. Application to handwriting recognition," Pattern. Recognit., vol. 42, no. 12, pp. 3264-3270, Dec. 2009.
-
(2009)
Pattern. Recognit.
, vol.42
, Issue.12
, pp. 3264-3270
-
-
Adankon, M.M.1
Cheriet, M.2
-
12
-
-
84944257623
-
Algorithm selection via meta-learning and sample-based active testing
-
S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Vanschoren, "Algorithm selection via meta-learning and sample-based active testing," in Proc. Meta-Learn. Algorithm Selection Workshop ECMLPKDD, 2015, pp. 55-66.
-
(2015)
Proc. Meta-Learn. Algorithm Selection Workshop ECMLPKDD
, pp. 55-66
-
-
Abdulrahman, S.M.1
Brazdil, P.2
Van Rijn, J.N.3
Vanschoren, J.4
-
13
-
-
0037365188
-
Combining classifiers with meta decision trees
-
Mar.
-
L. Todorovski and S. Deroski, "Combining classifiers with meta decision trees," Mach. Learn., vol. 50, no. 3, pp. 223-249, Mar. 2003.
-
(2003)
Mach. Learn.
, vol.50
, Issue.3
, pp. 223-249
-
-
Todorovski, L.1
Deroski, S.2
-
14
-
-
0036592028
-
Control of exploitation-exploration meta-parameter in reinforcement learning
-
Jun./Jul.
-
S. Ishii, W. Yoshida, and J. Yoshimoto, "Control of exploitation-exploration meta-parameter in reinforcement learning," Neural Netw., vol. 15, nos. 4-6, pp. 665-687, Jun./Jul. 2002.
-
(2002)
Neural Netw.
, vol.15
, Issue.4-6
, pp. 665-687
-
-
Ishii, S.1
Yoshida, W.2
Yoshimoto, J.3
-
15
-
-
0037258402
-
Meta-learning in reinforcement learning
-
Jan.
-
N. Schweighofer and D. Doya, "Meta-learning in reinforcement learning," Neural Netw., vol. 16, no. 1, pp. 5-9, Jan. 2003.
-
(2003)
Neural Netw.
, vol.16
, Issue.1
, pp. 5-9
-
-
Schweighofer, N.1
Doya, D.2
-
16
-
-
0346149798
-
Evolution of meta-parameters in reinforcement learning algorithm
-
Oct.
-
A. Eriksson, G. Capi, and K. Doya, "Evolution of meta-parameters in reinforcement learning algorithm," in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 1. Oct. 2003, pp. 412-417.
-
(2003)
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
, vol.1
, pp. 412-417
-
-
Eriksson, A.1
Capi, G.2
Doya, K.3
-
17
-
-
76649092973
-
A metalearning method based on temporal difference error
-
(Lecture Notes in Computer Science), C. Leung, M. Lee, and J. H. Chan, Eds. Berlin, Germany: Springer
-
K. Kobayashi, H. Mizoue, T. Kuremoto, and M. Obayashi, "A metalearning method based on temporal difference error," in Neural Infor-mation Processing (Lecture Notes in Computer Science), vol. 5863, C. Leung, M. Lee, and J. H. Chan, Eds. Berlin, Germany: Springer, 2009, pp. 530-537.
-
(2009)
Neural Infor-mation Processing
, vol.5863
, pp. 530-537
-
-
Kobayashi, K.1
Mizoue, H.2
Kuremoto, T.3
Obayashi, M.4
-
18
-
-
84890878755
-
Meta-learning of exploration and exploitation parameters with replacing eligibility traces
-
(Lecture Notes in Computer Science), Z.-H. Zhou and F. Schwenker, Eds. Berlin, Germany: Springer
-
M. Tokic, F. Schwenker, and G. Palm, "Meta-learning of exploration and exploitation parameters with replacing eligibility traces," in Partially Supervised Learning (Lecture Notes in Computer Science), vol. 8183, Z.-H. Zhou and F. Schwenker, Eds. Berlin, Germany: Springer, 2013, pp. 68-79.
-
(2013)
Partially Supervised Learning
, vol.8183
, pp. 68-79
-
-
Tokic, M.1
Schwenker, F.2
Palm, G.3
-
19
-
-
0034241361
-
Gradient-based optimization of hyperparameters
-
Y. Bengio, "Gradient-based optimization of hyperparameters," Neural Comput., vol. 12, no. 8, pp. 1889-1900, 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.8
, pp. 1889-1900
-
-
Bengio, Y.1
-
20
-
-
77956526263
-
Surrogating the surrogate: Accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm
-
R. Bardenet and B. Kégl, "Surrogating the surrogate: Accelerating Gaussian-process-based global optimization with a mixture cross-entropy algorithm," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 55-62.
-
(2010)
Proc. 27th Int. Conf. Mach. Learn.
, pp. 55-62
-
-
Bardenet, R.1
Kégl, B.2
-
21
-
-
84857855190
-
Random search for hyper-parameter optimization
-
Feb.
-
J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, pp. 281-305, Feb. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
22
-
-
84862009037
-
Meta-learning for evolutionary parameter optimization of classifiers
-
Jun.
-
M. Reif, F. Shafait, and A. Dengel, "Meta-learning for evolutionary parameter optimization of classifiers," Mach. Learn., vol. 87, no. 3, pp. 357-380, Jun. 2012.
-
(2012)
Mach. Learn.
, vol.87
, Issue.3
, pp. 357-380
-
-
Reif, M.1
Shafait, F.2
Dengel, A.3
-
23
-
-
85018371540
-
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
-
C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, "Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms," in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013, pp. 847-855.
-
(2013)
Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 847-855
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.H.3
Leyton-Brown, K.4
-
24
-
-
84908304230
-
Recommending learning algorithms and their associated hyperparameters
-
M. R. Smith, L. Mitchell, C. Giraud-Carrier, and T. Martinez, "Recommending learning algorithms and their associated hyperparameters," in Proc. Meta-Learn. Algorithm Selection Workshop ECAI, 2014, pp. 39-40.
-
(2014)
Proc. Meta-Learn. Algorithm Selection Workshop ECAI
, pp. 39-40
-
-
Smith, M.R.1
Mitchell, L.2
Giraud-Carrier, C.3
Martinez, T.4
-
25
-
-
84959891641
-
Initializing Bayesian hyperparameter optimization via meta-learning
-
M. Feurer, J. T. Springenberg, and F. Hutter, "Initializing Bayesian hyperparameter optimization via meta-learning," in Proc. 29th AAAI Conf. Artif. Intell., 2015, pp. 1128-1135.
-
(2015)
Proc. 29th AAAI Conf. Artif. Intell.
, pp. 1128-1135
-
-
Feurer, M.1
Springenberg, J.T.2
Hutter, F.3
-
27
-
-
56449125387
-
Tuning continual exploration in reinforcement learning: An optimality property of the Boltzmann strategy
-
Aug.
-
Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens, "Tuning continual exploration in reinforcement learning: An optimality property of the Boltzmann strategy," Neurocomputing, vol. 71, nos. 13-15, pp. 2507-2520, Aug. 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.13-15
, pp. 2507-2520
-
-
Achbany, Y.1
Fouss, F.2
Yen, L.3
Pirotte, A.4
Saerens, M.5
-
28
-
-
33646236328
-
Completely self-referential optimal reinforcement learners
-
(Lecture Notes in Computer Science), Berlin, Germany: Springer
-
J. Schmidhuber, "Completely self-referential optimal reinforcement learners," in Artificial Neural Networks: Formal Models and Their Applica-tions (Lecture Notes in Computer Science), vol. 3697. Berlin, Germany: Springer, 2005, pp. 223-233.
-
(2005)
Artificial Neural Networks: Formal Models and Their Applica-tions
, vol.3697
, pp. 223-233
-
-
Schmidhuber, J.1
-
29
-
-
84861122307
-
Projective simulation for artificial intelligence
-
Mar.
-
H. J. Briegel and G. De las Cuevas, "Projective simulation for artificial intelligence," Sci. Rep., vol. 2, p. 400, Mar. 2012.
-
(2012)
Sci. Rep.
, vol.2
, pp. 400
-
-
Briegel, H.J.1
De Las Cuevas, G.2
-
30
-
-
84921933259
-
Projective simulation for classical learning agents: A comprehensive investigation
-
Jan.
-
J. Mautner, A. Makmal, D. Manzano, M. Tiersch, and H. J. Briegel, "Projective simulation for classical learning agents: A comprehensive investigation," New Generat. Comput., vol. 33, no. 1, pp. 69-114, Jan. 2015.
-
(2015)
New Generat. Comput.
, vol.33
, Issue.1
, pp. 69-114
-
-
Mautner, J.1
Makmal, A.2
Manzano, D.3
Tiersch, M.4
Briegel, H.J.5
-
31
-
-
84924263612
-
Projective simulation applied to the grid-world and the mountain-car problem
-
[Online]
-
A. A. Melnikov, A. Makmal, and H. J. Briegel, "Projective simulation applied to the grid-world and the mountain-car problem," Artif. Intell. Res., vol. 3, no. 3, pp. 24-34, 2014. [Online]. Available: http://arxiv.org/abs/1405.5459
-
(2014)
Artif. Intell. Res.
, vol.3
, Issue.3
, pp. 24-34
-
-
Melnikov, A.A.1
Makmal, A.2
Briegel, H.J.3
-
32
-
-
84979829491
-
-
M.S. thesis, Dept. Comput. Sci., Univ. Bergen, Bergen, Norway
-
Ø. F. Bjerland, "Projective simulation compared to reinforcement learning," M.S. thesis, Dept. Comput. Sci., Univ. Bergen, Bergen, Norway, 2015.
-
(2015)
Projective Simulation Compared to Reinforcement Learning
-
-
Bjerland, Ø.F.1
-
36
-
-
0004168557
-
-
New York, NY, USA: Cambridge Univ. Press, ch. 6
-
R. Motwani and P. Raghavan, Randomized Algorithms. New York, NY, USA: Cambridge Univ. Press, 1995, ch. 6.
-
(1995)
Randomized Algorithms
-
-
Motwani, R.1
Raghavan, P.2
-
37
-
-
0003495236
-
-
International Series in Pure and Applied Physics). New York, NY, USA: McGraw-Hill
-
R. P. Feynman and A. R. Hibbs, Quantam Mechanics and Path Integrals (International Series in Pure and Applied Physics). New York, NY, USA: McGraw-Hill, 1965.
-
(1965)
Quantam Mechanics and Path Integrals
-
-
Feynman, R.P.1
Hibbs, A.R.2
-
38
-
-
35949005639
-
Quantum random walks
-
Aug.
-
Y. Aharonov, L. Davidovich, and N. Zagury, "Quantum random walks," Phys. Rev. A, vol. 48, pp. 1687-1690, Aug. 1993.
-
(1993)
Phys. Rev. A
, vol.48
, pp. 1687-1690
-
-
Aharonov, Y.1
Davidovich, L.2
Zagury, N.3
-
39
-
-
0034819347
-
Quantum walks on graphs
-
New York, NY, USA
-
D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, "Quantum walks on graphs," in Proc. 33rd Annu. ACM Symp. Theory Comput. (STOC), New York, NY, USA, 2001, pp. 50-59.
-
(2001)
Proc. 33rd Annu. ACM Symp. Theory Comput. (STOC)
, pp. 50-59
-
-
Aharonov, D.1
Ambainis, A.2
Kempe, J.3
Vazirani, U.4
-
40
-
-
0038784710
-
Exponential algorithmic speedup by a quantum walk
-
New York, NY, USA
-
A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, "Exponential algorithmic speedup by a quantum walk," in Proc. 35th Annu. ACM Symp. Theory Comput. (STOC), New York, NY, USA, 2003, pp. 59-68.
-
(2003)
Proc. 35th Annu. ACM Symp. Theory Comput. (STOC)
, pp. 59-68
-
-
Childs, A.M.1
Cleve, R.2
Deotto, E.3
Farhi, E.4
Gutmann, S.5
Spielman, D.A.6
-
41
-
-
24644478594
-
Discrete quantum walks hit exponentially faster
-
Oct.
-
J. Kempe, "Discrete quantum walks hit exponentially faster," Probab. Theory Rel., vol. 133, no. 2, pp. 215-235, Oct. 2005.
-
(2005)
Probab. Theory Rel.
, vol.133
, Issue.2
, pp. 215-235
-
-
Kempe, J.1
-
42
-
-
84955647305
-
Quantum walks canfind a marked element on any graph
-
Feb.
-
H. Krovi, F. Magniez, M. Ozols, and J. Roland, "Quantum walks canfind a marked element on any graph," Algorithmica, vol. 74, no. 2, pp. 851-907, Feb. 2015.
-
(2015)
Algorithmica
, vol.74
, Issue.2
, pp. 851-907
-
-
Krovi, H.1
Magniez, F.2
Ozols, M.3
Roland, J.4
-
43
-
-
84904537776
-
Quantum speedup for active learning agents
-
Jul.
-
G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado, and H. J. Briegel, "Quantum speedup for active learning agents," Phys. Rev. X, vol. 4, p. 031002, Jul. 2014.
-
(2014)
Phys. Rev. X
, vol.4
, pp. 031002
-
-
Paparo, G.D.1
Dunjko, V.2
Makmal, A.3
Martin-Delgado, M.A.4
Briegel, H.J.5
-
44
-
-
84924253868
-
Quantum-enhanced deliberation of learning agents using trapped ions
-
Feb.
-
V. Dunjko, N. Friis, and H. J. Briegel, "Quantum-enhanced deliberation of learning agents using trapped ions," New J. Phys., vol. 17, no. 2, p. 023006, Feb. 2015.
-
(2015)
New J. Phys.
, vol.17
, Issue.2
, pp. 023006
-
-
Dunjko, V.1
Friis, N.2
Briegel, H.J.3
-
45
-
-
84949845769
-
Coherent controlization using superconducting qubits
-
Aug.
-
N. Friis, A. A. Melnikov, G. Kirchmair, and H. J. Briegel, "Coherent controlization using superconducting qubits," Sci. Rep., vol. 5, p. 18036, Aug. 2015.
-
(2015)
Sci. Rep.
, vol.5
, pp. 18036
-
-
Friis, N.1
Melnikov, A.A.2
Kirchmair, G.3
Briegel, H.J.4
-
46
-
-
34247390032
-
A review of recent research in metareasoning and metalearning
-
M. L. Anderson and T. Oates, "A review of recent research in metareasoning and metalearning," AI Mag., vol. 28, no. 1, pp. 7-16, 2007.
-
(2007)
AI Mag.
, vol.28
, Issue.1
, pp. 7-16
-
-
Anderson, M.L.1
Oates, T.2
-
47
-
-
0003636089
-
-
Dept. Eng., Univ. Cambridge, Cambridge, U.K., Tech. Rep. CUED/F-INFENG/TR 166
-
G. A. Rummery and M. Niranjan, "On-line Q-learning using connectionist systems," Dept. Eng., Univ. Cambridge, Cambridge, U.K., Tech. Rep. CUED/F-INFENG/TR 166, 1994.
-
(1994)
On-line Q-learning Using Connectionist Systems
-
-
Rummery, G.A.1
Niranjan, M.2
-
48
-
-
15844389867
-
Bandit problems with side observations
-
Mar.
-
C.-C. Wang, S. R. Kulkarni, and H. V. Poor, "Bandit problems with side observations," IEEE Trans. Autom. Control, vol. 50, no. 3, pp. 338-355, Mar. 2005.
-
(2005)
IEEE Trans. Autom. Control
, vol.50
, Issue.3
, pp. 338-355
-
-
Wang, C.-C.1
Kulkarni, S.R.2
Poor, H.V.3
-
49
-
-
85132026293
-
Integrated architectures for learning, planning, and reacting based on approximating dynamic programming
-
R. S. Sutton, "Integrated architectures for learning, planning, and reacting based on approximating dynamic programming," in Proc. 7th Int. Conf. Mach. Learn., 1990, pp. 216-224.
-
(1990)
Proc. 7th Int. Conf. Mach. Learn.
, pp. 216-224
-
-
Sutton, R.S.1
|