-
1
-
-
84864348399
-
Is there a link between mitochondrial reserve respiratory capacity and aging?
-
22720157
-
Desler C, Hansen TL, Frederiksen JB, Marcker ML, Singh KK, Juel Rasmussen L. Is there a link between mitochondrial reserve respiratory capacity and aging? J. Aging Res. 2012; 2012:192503. doi: 10.1155/2012/192503 22720157
-
(2012)
J. Aging Res.
, vol.2012
, pp. 192503
-
-
Desler, C.1
Hansen, T.L.2
Frederiksen, J.B.3
Marcker, M.L.4
Singh, K.K.5
Juel Rasmussen, L.6
-
2
-
-
79953688173
-
Oxidative phosphorylation in cancer cells
-
20849810
-
Solaini G, Sgarbi G, Baracca A. Oxidative phosphorylation in cancer cells. Biochim. Biophys. Acta 2011; 1807:534–542. doi: 10.1016/j.bbabio.2010.09.003 20849810
-
(2011)
Biochim. Biophys. Acta
, vol.1807
, pp. 534-542
-
-
Solaini, G.1
Sgarbi, G.2
Baracca, A.3
-
3
-
-
70450207200
-
Spare respiratory capacity, oxidative stress, and excitotoxicity
-
19909281
-
Nicholls DG. Spare respiratory capacity, oxidative stress, and excitotoxicity. Biochem. Soc. Trans. 2009; 37:1385–1388. doi: 10.1042/BST0371385 19909281
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 1385-1388
-
-
Nicholls, D.G.1
-
4
-
-
79953180902
-
Assessing mitochondrial dysfunction in cells
-
21726199
-
Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011; 435:297–312. doi: 10.1042/BJ20110162 21726199
-
(2011)
Biochem. J.
, vol.435
, pp. 297-312
-
-
Brand, M.D.1
Nicholls, D.G.2
-
5
-
-
84911868514
-
The contributions of respiration and glycolysis to extracellular acid production
-
25449966
-
Mookerjee SA, Goncalves RLS, Gerencser AA, Nicholls DG, Brand MD. The contributions of respiration and glycolysis to extracellular acid production. Biochim. Biophys. Acta 2015; 1847:171–181. doi: 10.1016/j.bbabio.2014.10.005 25449966
-
(2015)
Biochim. Biophys. Acta
, vol.1847
, pp. 171-181
-
-
Mookerjee, S.A.1
Goncalves, R.L.S.2
Gerencser, A.A.3
Nicholls, D.G.4
Brand, M.D.5
-
6
-
-
84952838177
-
Measurement and analysis of extracellular acid production to determine glycolytic rate
-
Mookerjee SA, Brand MD. Measurement and analysis of extracellular acid production to determine glycolytic rate. J. Vis. Exp. 2015; 106;e53464; doi: 10.3791/53464
-
(2015)
J. Vis. Exp.
, vol.106
-
-
Mookerjee, S.A.1
Brand, M.D.2
-
7
-
-
85069238534
-
Separation of metabolic supply and demand: Aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane
-
Epstein T, Xu L, Gillies RJ, Gatenby RA. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab. 2014; 2.
-
(2014)
Cancer Metab
, vol.2
-
-
Epstein, T.1
Xu, L.2
Gillies, R.J.3
Gatenby, R.A.4
-
8
-
-
84898012248
-
Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors
-
24553119
-
Issaq SH, Teicher BA, Monks A. Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors. Cell Cycle 2014; 13:1152–1161. doi: 10.4161/cc.28010 24553119
-
(2014)
Cell Cycle
, vol.13
, pp. 1152-1161
-
-
Issaq, S.H.1
Teicher, B.A.2
Monks, A.3
-
9
-
-
36249018450
-
Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells
-
17997978
-
Kumagai S, Narasaki R, Hasumi K. Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. Biochem. Biophys. Res. Commun. 2008; 365:362–368. 17997978
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.365
, pp. 362-368
-
-
Kumagai, S.1
Narasaki, R.2
Hasumi, K.3
-
10
-
-
84929646104
-
High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells
-
25917094
-
Malinarich F, Duan K, Hamid RA, Bijin A, Lin WX, Poidinger M, et al. High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. J. Immunol. 2015; 194:5174–5186. doi: 10.4049/jimmunol.1303316 25917094
-
(2015)
J. Immunol.
, vol.194
, pp. 5174-5186
-
-
Malinarich, F.1
Duan, K.2
Hamid, R.A.3
Bijin, A.4
Lin, W.X.5
Poidinger, M.6
-
11
-
-
84890357795
-
Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE-12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria
-
24023862
-
Das KC. Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE-12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria. PLoS One. 2013; 8:e73358. doi: 10.1371/journal.pone.0073358 24023862
-
(2013)
PLoS One
, vol.8
-
-
Das, K.C.1
-
12
-
-
77649272094
-
Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity
-
19913546
-
Phillips D, Ten Hove M, Schneider JE, Wu CO, Sebag-Montefiore L, Aponte AM, et al. Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. J. Mol. Cell Cardiol. 2010; 48:582–590. doi: 10.1016/j.yjmcc.2009.10.033 19913546
-
(2010)
J. Mol. Cell Cardiol.
, vol.48
, pp. 582-590
-
-
Phillips, D.1
Ten Hove, M.2
Schneider, J.E.3
Wu, C.O.4
Sebag-Montefiore, L.5
Aponte, A.M.6
-
13
-
-
77949267064
-
Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation
-
20045004
-
Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J. Mol. Cell Cardiol. 2010; 48:725–734. doi: 10.1016/j.yjmcc.2009.12.014 20045004
-
(2010)
J. Mol. Cell Cardiol.
, vol.48
, pp. 725-734
-
-
Chung, S.1
Arrell, D.K.2
Faustino, R.S.3
Terzic, A.4
Dzeja, P.P.5
-
14
-
-
79960945131
-
Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
-
21803296
-
Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011; 14:264–271. doi: 10.1016/j.cmet.2011.06.011 21803296
-
(2011)
Cell Metab
, vol.14
, pp. 264-271
-
-
Folmes, C.D.1
Nelson, T.J.2
Martinez-Fernandez, A.3
Arrell, D.K.4
Lindor, J.Z.5
Dzeja, P.P.6
-
15
-
-
84910020013
-
Rapid Analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate
-
25360519
-
Pike Winer LS, Wu M. Rapid Analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate. PLoS ONE. 2014; 9:e109916. doi: 10.1371/journal.pone.0109916 25360519
-
(2014)
PLoS ONE
, vol.9
-
-
Pike Winer, L.S.1
Wu, M.2
-
16
-
-
0025007883
-
Control of respiration and oxidative phosphorylation in isolated rat liver cells
-
2209591
-
Brown GC, Lakin-Thomas PL, Brand MD. Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur. J. Biochem. 1990; 192:355–362. 2209591
-
(1990)
Eur. J. Biochem.
, vol.192
, pp. 355-362
-
-
Brown, G.C.1
Lakin-Thomas, P.L.2
Brand, M.D.3
-
17
-
-
0025359843
-
Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes
-
2376579
-
Nobes CD, Brown GC, Olive PN, Brand MD. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J. Biol. Chem. 1990; 265:12903–12909. 2376579
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 12903-12909
-
-
Nobes, C.D.1
Brown, G.C.2
Olive, P.N.3
Brand, M.D.4
-
19
-
-
0001007512
-
The Crabtree effect: A review
-
13717358
-
Ibsen KH. The Crabtree effect: a review. Cancer Res. 1961; 21:829–841. 13717358
-
(1961)
Cancer Res
, vol.21
, pp. 829-841
-
-
Ibsen, K.H.1
-
20
-
-
65449174289
-
Measuring mitochondrial bioenergetics in INS-1E insulinoma cells
-
19426881
-
Affourtit C, Brand MD. Measuring mitochondrial bioenergetics in INS-1E insulinoma cells. Methods Enzymol. 2009; 457:405–424. doi: 10.1016/S0076-6879(09)05023-X 19426881
-
(2009)
Methods Enzymol
, vol.457
, pp. 405-424
-
-
Affourtit, C.1
Brand, M.D.2
-
21
-
-
0028802746
-
A hierarchy of ATP-consuming processes in mammalian cells
-
7492307
-
Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 1995; 312:163–167. 7492307
-
(1995)
Biochem. J.
, vol.312
, pp. 163-167
-
-
Buttgereit, F.1
Brand, M.D.2
-
22
-
-
84925400550
-
Analysis and interpretation of microplate-based oxygen consumption and pH data
-
25416364
-
Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol. 2014; 547:309–354. doi: 10.1016/ B978-0-12-801415-8.00016-3 25416364
-
(2014)
Methods Enzymol
, vol.547
, pp. 309-354
-
-
Divakaruni, A.S.1
Paradyse, A.2
Ferrick, D.A.3
Murphy, A.N.4
Jastroch, M.5
-
23
-
-
80053614458
-
Assessing bioenergetic function in response to oxidative stress by metabolic profiling
-
21872656
-
Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic. Biol. Med. 2011; 51:1621–1635. doi: 10.1016/j.freeradbiomed.2011.08.005 21872656
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 1621-1635
-
-
Dranka, B.P.1
Benavides, G.A.2
Diers, A.R.3
Giordano, S.4
Zelickson, B.R.5
Reily, C.6
-
24
-
-
84878533006
-
Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood
-
23528848
-
Chacko BK, Kramer PA, Ravi S, Johnson MS, Hardy RW, Ballinger SW, et al. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab Invest. 2013; 93:690–700. doi: 10.1038/labinvest.2013.53 23528848
-
(2013)
Lab Invest
, vol.93
, pp. 690-700
-
-
Chacko, B.K.1
Kramer, P.A.2
Ravi, S.3
Johnson, M.S.4
Hardy, R.W.5
Ballinger, S.W.6
-
25
-
-
84926656583
-
Cell energy budget platform for assessment of cell metabolism
-
25634285
-
Papkovsky DB, Zhdanov AV. Cell energy budget platform for assessment of cell metabolism. Methods Mol. Biol. 2015; 1265:333–348. doi: 10.1007/978-1-4939-2288-8_23 25634285
-
(2015)
Methods Mol. Biol.
, vol.1265
, pp. 333-348
-
-
Papkovsky, D.B.1
Zhdanov, A.V.2
-
26
-
-
84901413335
-
Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption
-
24862264
-
Pelletier M, Billingham LK, Ramaswamy M, Siegel RM. Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption. Methods Enzymol. 2014; 542:125–149. doi: 10.1016/ B978-0-12-416618-9.00007-8 24862264
-
(2014)
Methods Enzymol
, vol.542
, pp. 125-149
-
-
Pelletier, M.1
Billingham, L.K.2
Ramaswamy, M.3
Siegel, R.M.4
-
27
-
-
84922308656
-
Assessing the bioenergetic profile of human pluripotent stem cells
-
25631022
-
Pfiffer V, Prigione A. Assessing the bioenergetic profile of human pluripotent stem cells. Methods Mol. Biol. 2015; 1264:279–288. doi: 10.1007/978-1-4939-2257-4_25 25631022
-
(2015)
Methods Mol. Biol.
, vol.1264
, pp. 279-288
-
-
Pfiffer, V.1
Prigione, A.2
-
28
-
-
79960712083
-
High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria
-
21799747
-
Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE. 2011; 6: e21746. doi: 10.1371/journal.pone.0021746 21799747
-
(2011)
PLoS ONE
, vol.6
-
-
Rogers, G.W.1
Brand, M.D.2
Petrosyan, S.3
Ashok, D.4
Elorza, A.A.5
Ferrick, D.A.6
|