메뉴 건너뛰기




Volumn 85, Issue 4, 2012, Pages 771-779

Decision tree classifiers sensitive to heterogeneous costs

Author keywords

Cost sensitive learning; Decision tree classification; Heterogeneous attributes; Heterogeneous costs; Split attribute selection

Indexed keywords

ATTRIBUTE INFORMATION; ATTRIBUTE SELECTION; COST-SENSITIVE; COST-SENSITIVE LEARNING; DATA SETS; DECISION TREE CLASSIFICATION; DECISION TREE CLASSIFIERS; HETEROGENEOUS ATTRIBUTES; OVERFITTING; TRANSFORMATION FUNCTIONS;

EID: 84857357329     PISSN: 01641212     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jss.2011.10.007     Document Type: Article
Times cited : (44)

References (52)
  • 2
    • 34548547051 scopus 로고    scopus 로고
    • Handling generalized cost functions in the partitioning optimization problem through sequential binary programming
    • DOI 10.1109/ICDM.2005.74, 1565655, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
    • A.S. Abrahams, A. Becker, D. Fleder, and I.C. MacMillan Handling generalized cost functions in the partitioning optimization problem through sequential binary programming Proceedings of the 5th IEEE International Conference on Data Mining 2005 3 9 (Pubitemid 47385670)
    • (2005) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 3-9
    • Abrahams, A.S.1    Fleder, D.2    Backer, A.3    MacMillan, I.C.4
  • 6
    • 68549121111 scopus 로고    scopus 로고
    • C4.5 and imbalanced data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure
    • N.V. Chawla C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure Workshop on Learning from Imbalanced Data Sets II 2003
    • (2003) Workshop on Learning from Imbalanced Data Sets II
    • Chawla, N.V.1
  • 8
    • 0344324689 scopus 로고    scopus 로고
    • MetaCost: A general method for making classifiers cost-sensitive
    • P. Domingos MetaCost: a general method for making classifiers cost-sensitive Knowledge Discovery and Data Mining 1999 155 164
    • (1999) Knowledge Discovery and Data Mining , pp. 155-164
    • Domingos, P.1
  • 22
    • 34547963287 scopus 로고    scopus 로고
    • Asymmetric boosting
    • DOI 10.1145/1273496.1273573, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • H. Masnadi-Shirazi, and N. Vasconcelos Asymmetric boosting Proceedings of the 24th International Conference on Machine Learning 2007 609 619 (Pubitemid 47275116)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 609-619
    • Masnadi-Shirazi, H.1    Vasconcelos, N.2
  • 27
    • 0026154832 scopus 로고
    • Use of background knowledge in decision tree induction
    • DOI 10.1023/A:1022609710832
    • M. Nunez The use of background knowledge in decision tree induction Machine Learning 6 1991 231 250 (Pubitemid 21737707)
    • (1991) Machine Learning , vol.6 , Issue.3 , pp. 231-250
    • Nunez Marlon1
  • 29
    • 0041992571 scopus 로고    scopus 로고
    • Well-trained PETs: Improving probability estimation trees
    • Stern School of Business, New York University, NY, NY 10012
    • Provost, F.; Domingos, P.; 2000. Well-trained PETs: improving probability estimation trees. CDER Working Paper #00-04-IS, Stern School of Business, New York University, NY, NY 10012.
    • (2000) CDER Working Paper #00-04-IS
    • Provost, F.1    Domingos, P.2
  • 30
    • 34250704657 scopus 로고    scopus 로고
    • Semi-parametric optimization for missing data imputation
    • Y.S. Qin Semi-parametric optimization for missing data imputation Applied Intelligence 27 1 2007 79 88
    • (2007) Applied Intelligence , vol.27 , Issue.1 , pp. 79-88
    • Qin, Y.S.1
  • 36
    • 34250776037 scopus 로고    scopus 로고
    • Feature value acquisition in testing: A sequential batch test algorithm
    • V.S. Sheng, and C.X. Ling Feature value acquisition in testing: a sequential batch test algorithm ICML 2006 2006 809 816
    • (2006) ICML 2006 , pp. 809-816
    • Sheng, V.S.1    Ling, C.X.2
  • 39
    • 0027682298 scopus 로고
    • Cost-sensitive learning of classification knowledge and its applications in robotics
    • M. Tan Cost-sensitive learning of classification knowledge and its applications in robotics Machine Learning 13 1993 7 33
    • (1993) Machine Learning , vol.13 , pp. 7-33
    • Tan, M.1
  • 40
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • DOI 10.1109/TKDE.2002.1000348
    • K.M. Ting An instance-weighting method to induce cost-sensitive trees IEEE Transactions on Knowledge and Data Engineering 14 3 2002 659 665 (Pubitemid 34669622)
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 41
    • 84957062500 scopus 로고    scopus 로고
    • Boosting Trees for Cost-Sensitive Classifications
    • Machine Learning: ECML-98
    • K. Ting, and Z. Zheng Boosting Trees for Cost-Sensitive Classifications Machine Learning: ECML-98: 10th European Conf on Machine Learning 1998 190 195 (Pubitemid 128067184)
    • (1998) LNCS , Issue.1398 , pp. 190-195
    • Ting, K.M.1    Zheng, Z.2
  • 42
    • 0000865580 scopus 로고
    • Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
    • P.D. Turney Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm Journal of Artificial Intelligence Research 2 1995 369 409
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, P.D.1
  • 44
    • 77953324515 scopus 로고    scopus 로고
    • Handling over-fitting in test cost-sensitive decision tree learning by feature selection, smoothing and pruning
    • T. Wang, Z.X. Qin, Z. Jin, and S.C. Zhang Handling over-fitting in test cost-sensitive decision tree learning by feature selection, smoothing and pruning Journal of Systems and Software 83 2010 1137 1147
    • (2010) Journal of Systems and Software , vol.83 , pp. 1137-1147
    • Wang, T.1    Qin, Z.X.2    Jin, Z.3    Zhang, S.C.4
  • 48
    • 77955227108 scopus 로고    scopus 로고
    • Cost-sensitive classification with respect to waiting cost
    • S.C. Zhang Cost-sensitive classification with respect to waiting cost Knowledge-Based Systems 23 2010 369 378
    • (2010) Knowledge-Based Systems , vol.23 , pp. 369-378
    • Zhang, S.C.1
  • 49
    • 84857372439 scopus 로고    scopus 로고
    • KNN-CF approach: Incorporating certainty factor to kNN classification
    • S.C. Zhang KNN-CF approach: incorporating certainty factor to kNN classification IEEE Intelligent Informatics Bulletin 11 1 2010 25 34
    • (2010) IEEE Intelligent Informatics Bulletin , vol.11 , Issue.1 , pp. 25-34
    • Zhang, S.C.1
  • 50
    • 78951483757 scopus 로고    scopus 로고
    • Missing Data Imputation by Utilizing Information within Incomplete Instances
    • S.C. Zhang, Z. Jin, and X.F. Zhu Missing Data Imputation by Utilizing Information within Incomplete Instances Journal of Systems & Software 84 2011 452 459
    • (2011) Journal of Systems & Software , vol.84 , pp. 452-459
    • Zhang, S.C.1    Jin, Z.2    Zhu, X.F.3
  • 52
    • 30344485118 scopus 로고    scopus 로고
    • "Missing is useful": Missing values in cost-sensitive decision trees
    • DOI 10.1109/TKDE.2005.188
    • S.C. Zhang, Z.X. Qin, C.X. Ling, and S.L. Sheng Missing is useful: missing values in cost-sensitive decision trees IEEE Transactions on Knowledge and Data Engineering 17 12 2005 1689 1693 (Pubitemid 43060418)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.12 , pp. 1689-1693
    • Zhang, S.1    Qin, Z.2    Ling, C.X.3    Sheng, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.