-
1
-
-
84925289085
-
Dimensionality reduction of medical big data using neural-fuzzy classifier
-
A.T.Azar,, and A.E.Hassanien. 2015. Dimensionality reduction of medical big data using neural-fuzzy classifier. Soft Computing 19:1115–1127.
-
(2015)
Soft Computing
, vol.19
, pp. 1115-1127
-
-
Azar, A.T.1
Hassanien, A.E.2
-
3
-
-
85181549964
-
-
In Proceedings of the twelfth international conference on machine learning. Morgan Kaufmann
-
W.W.Cohen, 1995. Fast effective rule induction. In Proceedings of the twelfth international conference on machine learning. Morgan Kaufmann.
-
(1995)
Fast effective rule induction
-
-
Cohen, W.W.1
-
4
-
-
38249042848
-
On the editing rate of the MULTIEDIT algorithm
-
P.Devijver, 1986. On the editing rate of the MULTIEDIT algorithm. Pattern Recognition Letters 4:9–12.
-
(1986)
Pattern Recognition Letters
, vol.4
, pp. 9-12
-
-
Devijver, P.1
-
5
-
-
21144459575
-
On a monotonicity problem in step-down multiple test procedures
-
H.Finner, 1993. On a monotonicity problem in step-down multiple test procedures. Journal of the American Statistical Association 88:920–923.
-
(1993)
Journal of the American Statistical Association
, vol.88
, pp. 920-923
-
-
Finner, H.1
-
7
-
-
85181551437
-
-
In: Proceedings of the sixteenth international conference on machine learning. San Francisco, CA: Morgan Kaufmann
-
D.Gamberger,, R.Boskovic, N.Lavrac, and C.Groselj. 1999. Experiments with noise filtering in a medical domain. In: Proceedings of the sixteenth international conference on machine learning. San Francisco, CA: Morgan Kaufmann.
-
(1999)
Experiments with noise filtering in a medical domain
-
-
Gamberger, D.1
Boskovic, R.2
Lavrac, N.3
Groselj, C.4
-
9
-
-
0034143132
-
Noise detection and elimination in data preprocessing: Experiments in medical domains
-
D.Gamberger,, N.Lavrac, and S.Dzeroski. 2000. Noise detection and elimination in data preprocessing: Experiments in medical domains. Applied Artificial Intelligence 14:205–223.
-
(2000)
Applied Artificial Intelligence
, vol.14
, pp. 205-223
-
-
Gamberger, D.1
Lavrac, N.2
Dzeroski, S.3
-
10
-
-
84927970970
-
Effect of label noise in the complexity of classification problems
-
L.P.F.Garcia,, A.C.P.L.F.de Carvalho, and A.C.Lorena. 2015. Effect of label noise in the complexity of classification problems. Neurocomputing 160:108–119.
-
(2015)
Neurocomputing
, vol.160
, pp. 108-119
-
-
Garcia, L.P.F.1
de Carvalho, A.C.P.L.F.2
Lorena, A.C.3
-
11
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
-
S.García,, A.Fernández, J.Luengo, and F.Herrera. 2010. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180:2044–2064.
-
(2010)
Information Sciences
, vol.180
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
12
-
-
0030125436
-
Noise modelling and evaluating learning from examples
-
R.J.Hickey, 1996. Noise modelling and evaluating learning from examples. Artificial Intelligence 82:157–179.
-
(1996)
Artificial Intelligence
, vol.82
, pp. 157-179
-
-
Hickey, R.J.1
-
14
-
-
0034922742
-
Machine learning for medical diagnosis: History, state of the art and perspective
-
I.Kononenko, 2001. Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine 23:89–109.
-
(2001)
Artificial Intelligence in Medicine
, vol.23
, pp. 89-109
-
-
Kononenko, I.1
-
15
-
-
84899493558
-
Cytological image analysis with firefly nuclei detection and hybrid one-class classification decomposition
-
B.Krawczyk,, and P.Filipczuk. 2014. Cytological image analysis with firefly nuclei detection and hybrid one-class classification decomposition. Engineering Applications of Artificial Intelligence 31:126–135.
-
(2014)
Engineering Applications of Artificial Intelligence
, vol.31
, pp. 126-135
-
-
Krawczyk, B.1
Filipczuk, P.2
-
16
-
-
84901587069
-
A hybrid classifier committee for analysing asymmetry features in breast thermograms
-
B.Krawczyk,, and G.Schaefer. 2014. A hybrid classifier committee for analysing asymmetry features in breast thermograms. Applied Soft Computing 20:112–118.
-
(2014)
Applied Soft Computing
, vol.20
, pp. 112-118
-
-
Krawczyk, B.1
Schaefer, G.2
-
17
-
-
84906309048
-
Hypertension type classification using hierarchical ensemble of one-class classifiers for imbalanced data
-
Bogdanova A.M., Gjorgjevikj D., (eds), Advances in Intelligent Systems and Computing, Switzerland: Springer International
-
B.Krawczyk,, and M.Woźniak. 2015. Hypertension type classification using hierarchical ensemble of one-class classifiers for imbalanced data. In ICT innovations 2014, ed. A.M.Bogdanova and D.Gjorgjevikj, 341–349, Advances in Intelligent Systems and Computing 311, Switzerland: Springer International.
-
(2015)
ICT innovations 2014
, pp. 341-349
-
-
Krawczyk, B.1
Woźniak, M.2
-
20
-
-
33748659204
-
Detecting potential labeling errors in microarrays by data perturbation
-
A.Malossini,, E.Blanzieri, and R.T.Ng. 2006. Detecting potential labeling errors in microarrays by data perturbation. Bioinformatics 22:2114–2121.
-
(2006)
Bioinformatics
, vol.22
, pp. 2114-2121
-
-
Malossini, A.1
Blanzieri, E.2
Ng, R.T.3
-
22
-
-
84892889305
-
Knowledge discovery in clinical decision support systems for pain management: A systematic review
-
N.Pombo,, P.Araújo, and J.Viana. 2014. Knowledge discovery in clinical decision support systems for pain management: A systematic review. Artificial Intelligence in Medicine 60:1–11.
-
(2014)
Artificial Intelligence in Medicine
, vol.60
, pp. 1-11
-
-
Pombo, N.1
Araújo, P.2
Viana, J.3
-
23
-
-
33744584654
-
Induction of decision trees
-
J.R.Quinlan, 1986. Induction of decision trees. Machine Learning 1:81–106.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
25
-
-
84880920627
-
Tackling the problem of classification with noisy data using multiple classifier systems: Analysis of the performance and robustness
-
J.A.Sáez,, M.Galar, J.Luengo, and F.Herrera. 2013. Tackling the problem of classification with noisy data using multiple classifier systems: Analysis of the performance and robustness. Information Sciences 247:1–20.
-
(2013)
Information Sciences
, vol.247
, pp. 1-20
-
-
Sáez, J.A.1
Galar, M.2
Luengo, J.3
Herrera, F.4
-
26
-
-
84884965072
-
Analyzing the presence of noise in multi-class problems: Alleviating its influence with the one-vs-one decomposition
-
J.A.Sáez,, M.Galar, J.Luengo, and F.Herrera. 2014. Analyzing the presence of noise in multi-class problems: Alleviating its influence with the one-vs-one decomposition. Knowledge and Information Systems 38:179–206.
-
(2014)
Knowledge and Information Systems
, vol.38
, pp. 179-206
-
-
Sáez, J.A.1
Galar, M.2
Luengo, J.3
Herrera, F.4
-
27
-
-
84866043469
-
Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification
-
J.A.Sáez,, J.Luengo, and F.Herrera. 2013. Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification. Pattern Recognition 46:355–364.
-
(2013)
Pattern Recognition
, vol.46
, pp. 355-364
-
-
Sáez, J.A.1
Luengo, J.2
Herrera, F.3
-
28
-
-
0347895067
-
Analysis of new techniques to obtain quality training sets
-
J.Sánchez,, R.Barandela, A.Márques, R.Alejo, and J.Badenas. 2003. Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters 24:1015–1022.
-
(2003)
Pattern Recognition Letters
, vol.24
, pp. 1015-1022
-
-
Sánchez, J.1
Barandela, R.2
Márques, A.3
Alejo, R.4
Badenas, J.5
-
29
-
-
0031164017
-
Prototype selection for the nearest neighbor rule through proximity graphs
-
J.Sánchez,, F.Pla, and F.Ferri. 1997. Prototype selection for the nearest neighbor rule through proximity graphs. Pattern Recognition Letters 18:507–513.
-
(1997)
Pattern Recognition Letters
, vol.18
, pp. 507-513
-
-
Sánchez, J.1
Pla, F.2
Ferri, F.3
-
33
-
-
0015361129
-
Asymptotic properties of nearest neighbor rules using edited data
-
D.Wilson, 1972. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems and Man and Cybernetics 2:408–421.
-
(1972)
IEEE Transactions on Systems and Man and Cybernetics
, vol.2
, pp. 408-421
-
-
Wilson, D.1
-
35
-
-
33847181085
-
-
In Proceedings of the 6th online world conference on soft computing in industrial applications
-
D.Wolpert, 2001. The supervised learning no-free-lunch theorems. In Proceedings of the 6th online world conference on soft computing in industrial applications, Springer London, 25–42.
-
(2001)
The supervised learning no-free-lunch theorems
, pp. 25-42
-
-
Wolpert, D.1
-
36
-
-
46649091716
-
Mining with noise knowledge: Error-aware data mining
-
X.Wu,, and X.Zhu. 2008. Mining with noise knowledge: Error-aware data mining. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 38:917–932.
-
(2008)
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
, vol.38
, pp. 917-932
-
-
Wu, X.1
Zhu, X.2
-
37
-
-
19544372918
-
Class noise vs. attribute noise: A quantitative study
-
X.Zhu,, and X.Wu. 2004. Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review 22:177–210.
-
(2004)
Artificial Intelligence Review
, vol.22
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
|