메뉴 건너뛰기




Volumn 160, Issue , 2015, Pages 108-119

Effect of label noise in the complexity of classification problems

Author keywords

Classification; Complexity measures; Label noise; Noise Filter

Indexed keywords

DIGITAL STORAGE;

EID: 84927970970     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.10.085     Document Type: Article
Times cited : (129)

References (37)
  • 1
    • 0001182408 scopus 로고
    • The effect of noise on concept learning
    • Morgan Kaufmann Publishers Inc. R.S.I. Michalski, J.G. Carboneel, Mitchell (Eds.)
    • Quinlan J.R. The effect of noise on concept learning. Machine Learning 1986, 149-166. Morgan Kaufmann Publishers Inc. R.S.I. Michalski, J.G. Carboneel, Mitchell (Eds.).
    • (1986) Machine Learning , pp. 149-166
    • Quinlan, J.R.1
  • 2
    • 85130734369 scopus 로고    scopus 로고
    • Knowledge discovery and data mining. towards a unifying framework
    • AAAI Press, E. Simoudis, J. Han, U.M. Fayyad (Eds.)
    • Fayyad U.M., Piatetsky-Shapiro G., Smyth P. Knowledge discovery and data mining. towards a unifying framework. KDD 1996, 82-88. AAAI Press. E. Simoudis, J. Han, U.M. Fayyad (Eds.).
    • (1996) KDD , pp. 82-88
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 3
    • 84893677824 scopus 로고    scopus 로고
    • Ensemble-based noise detection. noise ranking and visual performance evaluation
    • Sluban B., Gamberger D., Lavrac N. Ensemble-based noise detection. noise ranking and visual performance evaluation. Data Mining Knowl. Discov. 2014, 28(2):265-303. 10.1007/s10618-012-0299-1.
    • (2014) Data Mining Knowl. Discov. , vol.28 , Issue.2 , pp. 265-303
    • Sluban, B.1    Gamberger, D.2    Lavrac, N.3
  • 4
    • 0016969272 scopus 로고
    • An experiment with the edited nearest-neighbor rule
    • Tomek I. An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 1976, 6(6):448-452. 10.1109/TSMC.1976.4309523.
    • (1976) IEEE Trans. Syst. Man Cybern. , vol.6 , Issue.6 , pp. 448-452
    • Tomek, I.1
  • 5
    • 0030354375 scopus 로고    scopus 로고
    • Identifying and eliminating mislabeled training instances
    • AAAI Press/The MIT Press
    • Brodley C.E., Friedl M.A. Identifying and eliminating mislabeled training instances. AAAI/IAAI 1996, vol. 1:799-805. AAAI Press/The MIT Press.
    • (1996) AAAI/IAAI , vol.1 , pp. 799-805
    • Brodley, C.E.1    Friedl, M.A.2
  • 6
    • 33746071857 scopus 로고    scopus 로고
    • Ensemble methods for noise elimination in classification problems
    • Springer, Berlin, Heidelberg
    • Verbaeten S., Assche A.V. Ensemble methods for noise elimination in classification problems. Multiple Classifier Systems, Lecture Notes in Computer Science 2003, vol. 2709:317-325. Springer, Berlin, Heidelberg. 10.1007/3-540-44938-8_32.
    • (2003) Multiple Classifier Systems, Lecture Notes in Computer Science , vol.2709 , pp. 317-325
    • Verbaeten, S.1    Assche, A.V.2
  • 9
    • 84898809250 scopus 로고    scopus 로고
    • An instance level analysis of data complexity
    • Smith M., Martinez T., Giraud-Carrier C. An instance level analysis of data complexity. Mach. Learn. 2014, 95(2):225-256. 10.1007/s10994-013-5422-z.
    • (2014) Mach. Learn. , vol.95 , Issue.2 , pp. 225-256
    • Smith, M.1    Martinez, T.2    Giraud-Carrier, C.3
  • 10
    • 84899651693 scopus 로고    scopus 로고
    • Classification in the presence of label noise: a survey, IEEE Trans
    • B. Frenay, M. Verleysen, Classification in the presence of label noise: a survey, IEEE Trans. Neural Netw. Learning Syst. 99 (2015) 1-25. doi:10.1109/TNNLS.2013.2292894.
    • (2015) Neural Netw. Learning Syst. , vol.99 , pp. 1-25
    • Frenay, B.1    Verleysen, M.2
  • 11
    • 0036522441 scopus 로고    scopus 로고
    • Complexity measures of supervised classification problems
    • Ho T.K., Basu M. Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24(3):289-300. 10.1109/34.990132.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.3 , pp. 289-300
    • Ho, T.K.1    Basu, M.2
  • 13
    • 33947724499 scopus 로고    scopus 로고
    • Characterization of complex networks: a survey of measurements
    • L.F. Costa, F.A. Rodrigues, G. Travieso, P.R.V. Boas, Characterization of complex networks: a survey of measurements, Adv. Phys. 56 (2008) 167-242.
    • (2008) Adv. Phys. , vol.56 , pp. 167-242
    • Costa, L.F.1    Rodrigues, F.A.2    Travieso, G.3    Boas, P.R.V.4
  • 14
    • 67649881154 scopus 로고    scopus 로고
    • Statistical Analysis of Network Data: Methods and Models
    • Springer
    • E. Kolaczyk, Statistical Analysis of Network Data: Methods and Models, in: Springer Series in Statistics, Springer, 2009.
    • (2009) Springer Series in Statistics
    • Kolaczyk, E.1
  • 15
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise. a quantitative study
    • Zhu X., Wu X. Class noise vs. attribute noise. a quantitative study. Artif. Intell. Rev. 2004, 22(3):177-210. 10.1007/s10462-004-0751-8.
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.3 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 16
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach. Learn. 1986, 1(1):81-106. 10.1007/BF00116251.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 19
    • 84927968339 scopus 로고    scopus 로고
    • Support vector machines for automatic data cleanup
    • A. Ganapathiraju, J. Picone, Support vector machines for automatic data cleanup, in: INTERSPEECH, ISCA, 2000, pp. 210-213.
    • (2000) INTERSPEECH, ISCA , pp. 210-213
    • Ganapathiraju, A.1    Picone, J.2
  • 20
    • 84927975113 scopus 로고    scopus 로고
    • Data Complexity in Machine Learning, Technical Report
    • CaltechCSTR:2006.004, Caltech Computer Science
    • L. Li, Y.S. Abu-Mostafa, Data Complexity in Machine Learning, Technical Report. CaltechCSTR:2006.004, Caltech Computer Science, 2006.
    • (2006)
    • Li, L.1    Abu-Mostafa, Y.S.2
  • 21
    • 58349113438 scopus 로고    scopus 로고
    • Data complexity analysis: linkage between context and solution in classification
    • Ho T.K.
    • T.K. Ho, Data complexity analysis: linkage between context and solution in classification, in: Structural, Syntactic, and Statistical Pattern Recognition, vol. 5342 of Lecture Notes in Computer Science, 2008, pp. 986-995. doi:10.1007/978-3-540-89689-0_102.
    • (2008) Structural, Syntactic, and Statistical Pattern Recognition of Lecture Notes in Computer Science , vol.5342 , pp. 986-995
  • 22
    • 0042074099 scopus 로고    scopus 로고
    • Prism. a novel framework for pattern recognition
    • Singh S. Prism. a novel framework for pattern recognition. Pattern Anal. Appl. 2003, 6(2):134-149. 10.1007/s10044-002-0186-2.
    • (2003) Pattern Anal. Appl. , vol.6 , Issue.2 , pp. 134-149
    • Singh, S.1
  • 23
    • 84866043469 scopus 로고    scopus 로고
    • Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification
    • Sáez J.A., Luengo J., Herrera F. Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification. Pattern Recognit. 2013, 46(1):355-364. http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2012.07.009.
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 355-364
    • Sáez, J.A.1    Luengo, J.2    Herrera, F.3
  • 26
    • 79952750417 scopus 로고    scopus 로고
    • Documentation for the Data Complexity Library in C++
    • La Salle - Universitat Ramon Llull.
    • A. Orriols-Puig, N. Maciá, T.K. Ho, Documentation for the Data Complexity Library in C++, Technical Report, La Salle - Universitat Ramon Llull, 2010.
    • (2010) Technical Report
    • Orriols-Puig, A.1    Maciá, N.2    Ho, T.K.3
  • 28
    • 33744955193 scopus 로고    scopus 로고
    • (Ph.D. Thesis), Carnegie Mellon University, Language Technologies Institute, School of Computer Science.
    • X. Zhu, J. Lafferty, R. Rosenfeld, Semi-Supervised Learning with Graphs (Ph.D. Thesis), Carnegie Mellon University, Language Technologies Institute, School of Computer Science, 2005.
    • (2005) Semi-Supervised Learning with Graphs
    • Zhu, X.1    Lafferty, J.2    Rosenfeld, R.3
  • 31
    • 79951829331 scopus 로고    scopus 로고
    • Keel data-mining software tool. data set repository, integration of algorithms and experimental analysis framework
    • Alcalá-Fdez J., Fernández A., Luengo J., Derrac J., García S. Keel data-mining software tool. data set repository, integration of algorithms and experimental analysis framework. Mult.-Valued Logic Soft Comput. 2011, 17(2-3):255-287.
    • (2011) Mult.-Valued Logic Soft Comput. , vol.17 , Issue.2-3 , pp. 255-287
    • Alcalá-Fdez, J.1    Fernández, A.2    Luengo, J.3    Derrac, J.4    García, S.5
  • 32
    • 84891781761 scopus 로고    scopus 로고
    • Towards UCI+. a mindful repository design
    • Maciá N., Bernadó-Mansilla E. Towards UCI+. a mindful repository design. Inf. Sci. 2014, 261:237-262. 10.1016/j.ins.2013.08.059.
    • (2014) Inf. Sci. , vol.261 , pp. 237-262
    • Maciá, N.1    Bernadó-Mansilla, E.2
  • 33
    • 0343859301 scopus 로고    scopus 로고
    • Correcting noisy data
    • Morgan Kaufmann, I. Bratko, S. Dzeroski (Eds.)
    • Teng C.-M. Correcting noisy data. ICML 1999, 239-248. Morgan Kaufmann. I. Bratko, S. Dzeroski (Eds.).
    • (1999) ICML , pp. 239-248
    • Teng, C.-M.1
  • 34
    • 0342541592 scopus 로고
    • An Efficient Metric for Heterogeneous Inductive Learning Applications in the Attribute-Value Language
    • University of Bristol, Bristol, UK.
    • C. Giraud-Carrier, T. Martinez, An Efficient Metric for Heterogeneous Inductive Learning Applications in the Attribute-Value Language, Technical Report, University of Bristol, Bristol, UK, 1995.
    • (1995) Technical Report
    • Giraud-Carrier, C.1    Martinez, T.2
  • 35
    • 43349094507 scopus 로고    scopus 로고
    • The Igraph software package for complex network research
    • Csardi G., Nepusz T. The Igraph software package for complex network research. InterJ. Complex Syst. 2006, 34:695. URL http://igraph.sf.net.
    • (2006) InterJ. Complex Syst. , vol.34 , pp. 695
    • Csardi, G.1    Nepusz, T.2
  • 36
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000, 38(3):257-286.
    • (2000) Mach. Learn. , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 37
    • 0015361129 scopus 로고
    • Asymtoptic properties of nearest neighbor rules using edited data
    • Wilson D.L. Asymtoptic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 1972, 2(3):408-421.
    • (1972) IEEE Trans. Syst. Man Cybern. , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.