-
2
-
-
33846598098
-
Structure of the monooxygenase component of a two-component flavoprotein monooxygenase
-
Alfieri A, Fersini F, Ruangchan N, Prongjit M, Chaiyen P, Mattevi A. Structure of the monooxygenase component of a two-component flavoprotein monooxygenase. Proc Natl Acad Sci U S A 2007;104:1177-82.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 1177-1182
-
-
Alfieri, A.1
Fersini, F.2
Ruangchan, N.3
Prongjit, M.4
Chaiyen, P.5
Mattevi, A.6
-
3
-
-
67649819680
-
Multiple pathways guide oxygen diffusion into flavoenzyme active sites
-
Baron R, Riley C, Chenprakhon P, Thotsaporn K, Winter RT, Alfieri A, Forneris F, van Berkel WJ, Chaiyen P, Fraaije MW, Mattevi A, McCammon JA. Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proc Natl Acad Sci U S A 2009;106:10603-8.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 10603-10608
-
-
Baron, R.1
Riley, C.2
Chenprakhon, P.3
Thotsaporn, K.4
Winter, R.T.5
Alfieri, A.6
Forneris, F.7
Van Berkel, W.J.8
Chaiyen, P.9
Fraaije, M.W.10
Mattevi, A.11
Mc Cammon, J.A.12
-
4
-
-
0033851115
-
The chemical and biological versatility of riboflavin
-
Massey V. The chemical and biological versatility of riboflavin. Biochem Soc Trans 2000;28:283-96.
-
(2000)
Biochem Soc Trans
, vol.28
, pp. 283-296
-
-
Massey, V.1
-
5
-
-
0017784006
-
Reaction of 3O2 with dihydroflavins. 1. N3,5-dimethyl-1, 5-dihydrolumiflavin and 1,5-dihydroisoalloxazines
-
2 with dihydroflavins. 1. N3,5-dimethyl-1, 5-dihydrolumiflavin and 1,5-dihydroisoalloxazines. J Am Chem Soc 1977;99:7272-86.
-
(1977)
J am Chem Soc
, vol.99
, pp. 7272-7286
-
-
Kemal, C.1
Chan, T.W.2
Bruice, T.C.3
-
6
-
-
67650085900
-
Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit
-
Campbell ZT, Weichsel A, Montfort WR, Baldwin TO. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit. Biochemistry 2009;48:6085-94.
-
(2009)
Biochemistry
, vol.48
, pp. 6085-6094
-
-
Campbell, Z.T.1
Weichsel, A.2
Montfort, W.R.3
Baldwin, T.O.4
-
7
-
-
24944534515
-
Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase
-
Kantz A, Chin F, Nallamothu N, Nguyen T, Gassner GT. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Arch Biochem Biophys 2005;442:102-16.
-
(2005)
Arch Biochem Biophys
, vol.442
, pp. 102-116
-
-
Kantz, A.1
Chin, F.2
Nallamothu, N.3
Nguyen, T.4
Gassner, G.T.5
-
8
-
-
33745991798
-
Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts
-
van Berkel WJ, Kamerbeek NM, Fraaije MW. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 2006;124:670-89.
-
(2006)
J Biotechnol
, vol.124
, pp. 670-689
-
-
Van Berkel, W.J.1
Kamerbeek, N.M.2
Fraaije, M.W.3
-
9
-
-
80051480273
-
Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms
-
Thotsaporn K, Chenprakhon P, Sucharitakul J, Mattevi A, Chaiyen P. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms. J Biol Chem 2011;286:28170-80.
-
(2011)
J Biol Chem
, vol.286
, pp. 28170-28180
-
-
Thotsaporn, K.1
Chenprakhon, P.2
Sucharitakul, J.3
Mattevi, A.4
Chaiyen, P.5
-
10
-
-
77952545697
-
The FMN-dependent two-component monooxygenase systems
-
Ellis HR. The FMN-dependent two-component monooxygenase systems. Arch Biochem Biophys 2010;497:1-12.
-
(2010)
Arch Biochem Biophys
, vol.497
, pp. 1-12
-
-
Ellis, H.R.1
-
11
-
-
0030003403
-
James P. Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli
-
Quadroni M, Staudenmann W, Kertesz M, James P. Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli. Eur J Biochem 1996;239:773-81.
-
(1996)
Eur J Biochem
, vol.239
, pp. 773-781
-
-
Quadroni, M.1
Staudenmann, W.2
Kertesz, M.3
-
12
-
-
0033578717
-
Characterization of a two-component alkanesulfo-nate monooxygenase from Escherichia coli
-
Eichhorn E, van der Ploeg JR, Leisinger T. Characterization of a two-component alkanesulfo-nate monooxygenase from Escherichia coli. J Biol Chem 1999;274:26639-46.
-
(1999)
J Biol Chem
, vol.274
, pp. 26639-26646
-
-
Eichhorn, E.1
Van Der Ploeg, J.R.2
Leisinger, T.3
-
13
-
-
0032856359
-
TheEscherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl
-
van Der Ploeg JR, Iwanicka-Nowicka R, Bykowski T, Hryniewicz MM, Leisinger T. The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl. J Biol Chem 1999;274:29358-65.
-
(1999)
J Biol Chem
, vol.274
, pp. 29358-29365
-
-
Van Der Ploeg, J.R.1
Iwanicka-Nowicka, R.2
Bykowski, T.3
Hryniewicz, M.M.4
Leisinger, T.5
-
14
-
-
0029815280
-
Identification of sulfate starvation-regulated genes in Escherichia coli: A gene cluster involved in the utilization of taurine as a sulfur source
-
van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T. Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 1996;178:5438-46.
-
(1996)
J Bacteriol
, vol.178
, pp. 5438-5446
-
-
Van Der Ploeg, J.R.1
Weiss, M.A.2
Saller, E.3
Nashimoto, H.4
Saito, N.5
Kertesz, M.A.6
Leisinger, T.7
-
15
-
-
0030770813
-
Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli
-
Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T. Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem 1997;272:23031-6.
-
(1997)
J Biol Chem
, vol.272
, pp. 23031-23036
-
-
Eichhorn, E.1
Van Der Ploeg, J.R.2
Kertesz, M.A.3
Leisinger, T.4
-
16
-
-
0031665131
-
Connerton IF. Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates
-
van der Ploeg JR, Cummings NJ, Leisinger T, Connerton IF. Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. Microbiology 1998;144:2555-61.
-
(1998)
Microbiology
, vol.144
, pp. 2555-2561
-
-
Van Der Ploeg, J.R.1
Cummings, N.J.2
Leisinger, T.3
-
17
-
-
0034010828
-
Riding the sulfur cycle - metabolism of sulfonates and sulfate esters in gramnegative bacteria
-
Kertesz MA. Riding the sulfur cycle - metabolism of sulfonates and sulfate esters in gramnegative bacteria. FEMS Microbiol Rev 2000;24:135-75.
-
(2000)
FEMS Microbiol Rev
, vol.24
, pp. 135-175
-
-
Kertesz, M.A.1
-
18
-
-
0034057728
-
Thessu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313
-
Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J Bacteriol 2000;182:2869-78.
-
(2000)
J Bacteriol
, vol.182
, pp. 2869-2878
-
-
Kahnert, A.1
Vermeij, P.2
Wietek, C.3
James, P.4
Leisinger, T.5
Kertesz, M.A.6
-
19
-
-
0033024195
-
Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313
-
Vermeij P, Wietek C, Kahnert A, Wuest T, Kertesz MA. Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313. Mol Microbiol 1999;32: 913-26.
-
(1999)
Mol Microbiol
, vol.32
, pp. 913-926
-
-
Vermeij, P.1
Wietek, C.2
Kahnert, A.3
Wuest, T.4
Kertesz, M.A.5
-
20
-
-
0032986343
-
A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa
-
Kertesz MA, Schmidt-Larbig K, Wuest T. A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. J Bacteriol 1999;181:1464-73.
-
(1999)
J Bacteriol
, vol.181
, pp. 1464-1473
-
-
Kertesz, M.A.1
Schmidt-Larbig, K.2
Wuest, T.3
-
21
-
-
18844452128
-
Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme
-
Gao B, Ellis HR. Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme. Biochem Biophys Res Commun 2005;331:1137-45.
-
(2005)
Biochem Biophys Res Commun
, vol.331
, pp. 1137-1145
-
-
Gao, B.1
Ellis, H.R.2
-
22
-
-
57649136394
-
Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis
-
Nissen MS, Youn B, Knowles BD, Ballinger JW, Jun SY, Belchik SM, Xun L, Kang C. Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis. J Biol Chem 2008;283:28710-20.
-
(2008)
J Biol Chem
, vol.283
, pp. 28710-28720
-
-
Nissen, M.S.1
Youn, B.2
Knowles, B.D.3
Ballinger, J.W.4
Jun, S.Y.5
Belchik, S.M.6
Xun, L.7
Kang, C.8
-
23
-
-
0032514724
-
Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase
-
Lei B, Tu SC. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase. Biochemistry 1998;37:14623-9.
-
(1998)
Biochemistry
, vol.37
, pp. 14623-14629
-
-
Lei, B.1
Tu, S.C.2
-
24
-
-
0037414756
-
Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor
-
Filisetti L, Fontecave M, Niviere V. Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor. J Biol Chem 2003;278:296-303.
-
(2003)
J Biol Chem
, vol.278
, pp. 296-303
-
-
Filisetti, L.1
Fontecave, M.2
Niviere, V.3
-
25
-
-
0021770735
-
Ferredoxin:NADP+ oxidoreductase. Equilibria in binary and ternary complexes with NADP+ and ferredoxin]
-
Batie CJ, Kamin H. Ferredoxin:NADP+ oxidoreductase. Equilibria in binary and ternary complexes with NADP+ and ferredoxin]. J Biol Chem 1984;259:8832-9.
-
(1984)
J Biol Chem
, vol.259
, pp. 8832-8839
-
-
Batie, C.J.1
Kamin, H.2
-
26
-
-
0021209611
-
Electron transfer by ferredoxin:NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex
-
Batie CJ, Kamin H. Electron transfer by ferredoxin:NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex. J Biol Chem 1984;259:11976-85.
-
(1984)
J Biol Chem
, vol.259
, pp. 11976-11985
-
-
Batie, C.J.1
Kamin, H.2
-
27
-
-
0028116514
-
Reaction of phthalate dioxygenase reductase with NADH and NAD: Kinetic and spectral characterization of intermediates
-
Gassner G, Wang L, Batie C, Ballou DP. Reaction of phthalate dioxygenase reductase with NADH and NAD: kinetic and spectral characterization of intermediates. Biochemistry 1994;33:12184-93.
-
(1994)
Biochemistry
, vol.33
, pp. 12184-12193
-
-
Gassner, G.1
Wang, L.2
Batie, C.3
Ballou, D.P.4
-
28
-
-
0028874558
-
Preparation and characterization of a truncated form of phthalate dioxygenase reductase that lacks an iron-sulfur domain
-
Gassner GT, Ballou DP. Preparation and characterization of a truncated form of phthalate dioxygenase reductase that lacks an iron-sulfur domain. Biochemistry 1995;34:13460-71.
-
(1995)
Biochemistry
, vol.34
, pp. 13460-13471
-
-
Gassner, G.T.1
Ballou, D.P.2
-
29
-
-
0039756091
-
Reaction of the NAD(P)H:Flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: Identification of intermediates
-
Niviere V, Vanoni MA, Zanetti G, Fontecave M. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates. Biochemistry 1998;37:11879-87.
-
(1998)
Biochemistry
, vol.37
, pp. 11879-11887
-
-
Niviere, V.1
Vanoni, M.A.2
Zanetti, G.3
Fontecave, M.4
-
30
-
-
33847644453
-
Mechanism of flavin reduction in the alkanesulfonate monooxygenase system
-
Gao B, Ellis HR. Mechanism of flavin reduction in the alkanesulfonate monooxygenase system. Biochim Biophys Acta 2007;1774:359-67.
-
(2007)
Biochim Biophys Acta
, vol.1774
, pp. 359-367
-
-
Gao, B.1
Ellis, H.R.2
-
31
-
-
0029027663
-
Three-dimensional structure of bacterial lu-ciferase from Vibrio harveyi at 2.4 A resolution
-
Fisher AJ, Raushel FM, Baldwin TO, Rayment I. Three-dimensional structure of bacterial lu-ciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 1995;34:6581-6.
-
(1995)
Biochemistry
, vol.34
, pp. 6581-6586
-
-
Fisher, A.J.1
Raushel, F.M.2
Baldwin, T.O.3
Rayment, I.4
-
32
-
-
0029664970
-
The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions
-
Fisher AJ, Thompson TB, Thoden JB, Baldwin TO, Rayment I. The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions. J Biol Chem 1996;271:21956-68.
-
(1996)
J Biol Chem
, vol.271
, pp. 21956-21968
-
-
Fisher, A.J.1
Thompson, T.B.2
Thoden, J.B.3
Baldwin, T.O.4
Rayment, I.5
-
33
-
-
0036445910
-
Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD
-
Eichhorn E, Davey CA, Sargent DF, Leisinger T, Richmond TJ. Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD. J Mol Biol 2002;324:457-68.
-
(2002)
J Mol Biol
, vol.324
, pp. 457-468
-
-
Eichhorn, E.1
Davey, C.A.2
Sargent, D.F.3
Leisinger, T.4
Richmond, T.J.5
-
34
-
-
0028209049
-
Crystal structure of recombinant chicken triosephosphate isomerase-phosphoglycolohydroxamate complex at 1.8-A resolution
-
Zhang Z, Sugio S, Komives EA, Liu KD, Knowles JR, Petsko GA, Ringe D. Crystal structure of recombinant chicken triosephosphate isomerase-phosphoglycolohydroxamate complex at 1.8-A resolution. Biochemistry 1994;33:2830-7.
-
(1994)
Biochemistry
, vol.33
, pp. 2830-2837
-
-
Zhang, Z.1
Sugio, S.2
Komives, E.A.3
Liu, K.D.4
Knowles, J.R.5
Petsko, G.A.6
Ringe, D.7
-
36
-
-
0035861072
-
Contribution of phosphate intrinsic binding energy to the enzymatic rate acceleration for triosephosphate isomerase
-
Amyes TL, O'Donoghue AC, Richard JP. Contribution of phosphate intrinsic binding energy to the enzymatic rate acceleration for triosephosphate isomerase. J Am Chem Soc 2001;123:11325-6.
-
(2001)
J am Chem Soc
, vol.123
, pp. 11325-11326
-
-
Amyes, T.L.1
O'Donoghue, A.C.2
Richard, J.P.3
-
37
-
-
84862563121
-
Mechanism for activation of triosephosphate isomerase by phosphite dianion: The role of a hydrophobic clamp
-
Malabanan MM, Koudelka AP, Amyes TL, Richard JP. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a hydrophobic clamp. J Am Chem Soc 2012;
-
(2012)
J am Chem Soc
-
-
Malabanan, M.M.1
Koudelka, A.P.2
Amyes, T.L.3
Richard, J.P.4
-
39
-
-
0017880944
-
Proteolytic inactivation of the luciferase from the luminous marine bacterium Beneckea harveyi
-
Baldwin TO, Hastings JW, Riley PL. Proteolytic inactivation of the luciferase from the luminous marine bacterium Beneckea harveyi. J Biol Chem 1978;253:5551-4.
-
(1978)
J Biol Chem
, vol.253
, pp. 5551-5554
-
-
Baldwin, T.O.1
Hastings, J.W.2
Riley, P.L.3
-
40
-
-
0019085525
-
Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: Evidence of a conserved structural feature
-
Holzman TF, Baldwin TO. Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature. Proc Natl Acad Sci U S A 1980;77:6363-7.
-
(1980)
Proc Natl Acad Sci U S A
, vol.77
, pp. 6363-6367
-
-
Holzman, T.F.1
Baldwin, T.O.2
-
41
-
-
0035909832
-
Functional implications of the unstructured loop in the (Beta/alpha) (8) barrel structure of the bacterial luciferase alpha subunit
-
Sparks JM, Baldwin TO. Functional implications of the unstructured loop in the (beta/alpha) (8) barrel structure of the bacterial luciferase alpha subunit. Biochemistry 2001;40:15436-43.
-
(2001)
Biochemistry
, vol.40
, pp. 15436-15443
-
-
Sparks, J.M.1
Baldwin, T.O.2
-
42
-
-
70450228475
-
Two lysine residues in the bacterial luciferase mobile loop stabilize reaction intermediates
-
Campbell ZT, Baldwin TO. Two lysine residues in the bacterial luciferase mobile loop stabilize reaction intermediates. J Biol Chem 2009;284:32827-34.
-
(2009)
J Biol Chem
, vol.284
, pp. 32827-32834
-
-
Campbell, Z.T.1
Baldwin, T.O.2
-
43
-
-
0037065718
-
Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase
-
Low JC, Tu SC. Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase. Biochemistry 2002;41:1724-31.
-
(2002)
Biochemistry
, vol.41
, pp. 1724-1731
-
-
Low, J.C.1
Tu, S.C.2
-
44
-
-
39649100854
-
Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme
-
2-dependent alkanesulfonate monooxygenase enzyme. Biochemistry 2008;47:2221-30.
-
(2008)
Biochemistry
, vol.47
, pp. 2221-2230
-
-
Zhan, X.1
Carpenter, R.A.2
Ellis, H.R.3
-
45
-
-
79960535290
-
Functional role of a conserved arginine residue located on a mobile loop of alkanesulfonate monooxygenase
-
Carpenter RA, Xiong J, Robbins JM, Ellis HR. Functional role of a conserved arginine residue located on a mobile loop of alkanesulfonate monooxygenase. Biochemistry 2011;50: 6469-77.
-
(2011)
Biochemistry
, vol.50
, pp. 6469-6477
-
-
Carpenter, R.A.1
Xiong, J.2
Robbins, J.M.3
Ellis, H.R.4
-
46
-
-
84861566184
-
Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase
-
Xiong J, Ellis HR. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase. Biochim Biophys Acta 2012;
-
(2012)
Biochim Biophys Acta
-
-
Xiong, J.1
Ellis, H.R.2
-
47
-
-
38349124762
-
Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: Unveiling the long-chain alkane hydroxylase
-
Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 2008;376:453-65.
-
(2008)
J Mol Biol
, vol.376
, pp. 453-465
-
-
Li, L.1
Liu, X.2
Yang, W.3
Xu, F.4
Wang, W.5
Feng, L.6
Bartlam, M.7
Wang, L.8
Rao, Z.9
-
48
-
-
0034918673
-
Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data
-
Lin LY, Sulea T, Szittner R, Vassilyev V, Purisima EO, Meighen EA. Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data. Protein Sci 2001;10:1563-71.
-
(2001)
Protein Sci
, vol.10
, pp. 1563-1571
-
-
Lin, L.Y.1
Sulea, T.2
Szittner, R.3
Vassilyev, V.4
Purisima, E.O.5
Meighen, E.A.6
-
49
-
-
0028108347
-
Activation of molecular oxygen by flavins and flavoproteins
-
Massey V. Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 1994;269:22459-62.
-
(1994)
J Biol Chem
, vol.269
, pp. 22459-22462
-
-
Massey, V.1
-
50
-
-
72049124811
-
Control of catalysis in flavin-dependent monooxygenases
-
Palfey BA, McDonald CA. Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 2010;493:26-36.
-
(2010)
Arch Biochem Biophys
, vol.493
, pp. 26-36
-
-
Palfey, B.A.1
Mc Donald, C.A.2
-
51
-
-
33751560654
-
Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli
-
Abdurachim K, Ellis HR. Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli. J Bacteriol 2006;188:8153-9.
-
(2006)
J Bacteriol
, vol.188
, pp. 8153-8159
-
-
Abdurachim, K.1
Ellis, H.R.2
-
52
-
-
0027396305
-
Mechanism of bacterial bioluminescence: 4a,5-dihydro-flavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics
-
Eckstein JW, Hastings JW, Ghisla S. Mechanism of bacterial bioluminescence: 4a,5-dihydro-flavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. Biochemistry 1993;32:404-11.
-
(1993)
Biochemistry
, vol.32
, pp. 404-411
-
-
Eckstein, J.W.1
Hastings, J.W.2
Ghisla, S.3
-
53
-
-
0024446020
-
Proposed mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate
-
Raushel FM, Baldwin TO. Proposed mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate. Biochem Biophys Res Commun 1989;164:1137-42.
-
(1989)
Biochem Biophys Res Commun
, vol.164
, pp. 1137-1142
-
-
Raushel, F.M.1
Baldwin, T.O.2
-
54
-
-
71649095852
-
Catalytic role of a conserved cysteine residue in the desul-fonation reaction by the alkanesulfonate monooxygenase enzyme
-
Carpenter RA, Zhan X, Ellis HR. Catalytic role of a conserved cysteine residue in the desul-fonation reaction by the alkanesulfonate monooxygenase enzyme. Biochim Biophys Acta 2010;1804:97-105.
-
(2010)
Biochim Biophys Acta
, vol.1804
, pp. 97-105
-
-
Carpenter, R.A.1
Zhan, X.2
Ellis, H.R.3
-
55
-
-
0020490705
-
Mechanistic studies on cyclohexanone oxygenase
-
Ryerson CC, Ballou DP, Walsh C. Mechanistic studies on cyclohexanone oxygenase. Biochemistry 1982;21:2644-55.
-
(1982)
Biochemistry
, vol.21
, pp. 2644-2655
-
-
Ryerson, C.C.1
Ballou, D.P.2
Walsh, C.3
-
56
-
-
0016760334
-
The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways
-
Hastings JW, Balny C. The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem 1975;250:7288-93.
-
(1975)
J Biol Chem
, vol.250
, pp. 7288-7293
-
-
Hastings, J.W.1
Balny, C.2
-
57
-
-
0026320286
-
Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit
-
Xin X, Xi L, Tu SC. Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit. Biochemistry 1991;30:11255-62.
-
(1991)
Biochemistry
, vol.30
, pp. 11255-11262
-
-
Xin, X.1
Xi, L.2
Tu, S.C.3
-
58
-
-
0030829154
-
Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant
-
Huang S, Tu SC. Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant. Biochemistry 1997;36:14609-15.
-
(1997)
Biochemistry
, vol.36
, pp. 14609-14615
-
-
Huang, S.1
Tu, S.C.2
-
59
-
-
0020348401
-
Use of isotope effects to elucidate enzyme mechanisms
-
Cleland WW. Use of isotope effects to elucidate enzyme mechanisms. CRC Crit Rev Biochem 1982;13:385-428.
-
(1982)
CRC Crit Rev Biochem
, vol.13
, pp. 385-428
-
-
Cleland, W.W.1
-
60
-
-
0032562179
-
Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction
-
Francisco WA, Abu-Soud HM, DelMonte AJ, Singleton DA, Baldwin TO, Raushel FM. Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction. Biochemistry 1998;37:2596-606.
-
(1998)
Biochemistry
, vol.37
, pp. 2596-2606
-
-
Francisco, W.A.1
Abu-Soud, H.M.2
Delmonte, A.J.3
Singleton, D.A.4
Baldwin, T.O.5
Raushel, F.M.6
-
61
-
-
0017580412
-
PH variation of the kinetic parameters and the catalytic mechanism of malic enzyme
-
Schimerlik MI, Cleland WW. pH variation of the kinetic parameters and the catalytic mechanism of malic enzyme. Biochemistry 1977;16:576-83.
-
(1977)
Biochemistry
, vol.16
, pp. 576-583
-
-
Schimerlik, M.I.1
Cleland, W.W.2
-
62
-
-
72049124811
-
Control of catalysis in flavin-dependent monooxygenases
-
Palfey BA, McDonald CA. Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 2010;493:26-36.
-
(2010)
Arch Biochem Biophys
, vol.493
, pp. 26-36
-
-
Palfey, B.A.1
Mc Donald, C.A.2
-
63
-
-
80051703580
-
Snapshots of enzymatic Baeyer-Villiger catalysis: Oxygen activation and intermediate stabilization
-
Orru R, Dudek HM, Martinoli C, Torres Pazmino DE, Royant A, Weik M, Fraaije MW, Mattevi A. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization. J Biol Chem 2011;286:29284-91.
-
(2011)
J Biol Chem
, vol.286
, pp. 29284-29291
-
-
Orru, R.1
Dudek, H.M.2
Martinoli, C.3
Torres Pazmino, D.E.4
Royant, A.5
Weik, M.6
Fraaije, M.W.7
Mattevi, A.8
-
64
-
-
0037474541
-
Structural characterisation and functional significance of transient protein-protein interactions
-
Nooren IM, Thornton JM. Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 2003;325:991-1018.
-
(2003)
J Mol Biol
, vol.325
, pp. 991-1018
-
-
Nooren, I.M.1
Thornton, J.M.2
-
65
-
-
77957771797
-
Transient protein-protein interactions: Structural, functional, and network properties
-
Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. Transient protein-protein interactions: structural, functional, and network properties. Structure 2010;18:1233-43.
-
(2010)
Structure
, vol.18
, pp. 1233-1243
-
-
Perkins, J.R.1
Diboun, I.2
Dessailly, B.H.3
Lees, J.G.4
Orengo, C.5
-
67
-
-
10144247252
-
Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. Strain IGTS8 as a sulfide/sulfoxide monooxygenase
-
Lei B, Tu SC. Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J Bacteriol 1996;178:5699-705.
-
(1996)
J Bacteriol
, vol.178
, pp. 5699-5705
-
-
Lei, B.1
Tu, S.C.2
-
68
-
-
0346736498
-
Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase
-
Jeffers CE, Nichols JC, Tu SC. Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase. Biochemistry 2003;42:529-34.
-
(2003)
Biochemistry
, vol.42
, pp. 529-534
-
-
Jeffers, C.E.1
Nichols, J.C.2
Tu, S.C.3
-
69
-
-
0038206661
-
Energy transfer evidence for in vitro and in vivo complexes of Vibrio harveyi flavin reductase P and luciferase
-
Low JC, Tu SC. Energy transfer evidence for in vitro and in vivo complexes of Vibrio harveyi flavin reductase P and luciferase. Photochem Photobiol 2003;77:446-52.
-
(2003)
Photochem Photobiol
, vol.77
, pp. 446-452
-
-
Low, J.C.1
Tu, S.C.2
-
70
-
-
67649825722
-
Fre is the major flavin reductase supporting bioluminescence from Vibrio harveyi luciferase in Escherichia coli
-
Campbell ZT, Baldwin TO. Fre is the major flavin reductase supporting bioluminescence from Vibrio harveyi luciferase in Escherichia coli. J Biol Chem 2009;284:8322-8.
-
(2009)
J Biol Chem
, vol.284
, pp. 8322-8328
-
-
Campbell, Z.T.1
Baldwin, T.O.2
-
71
-
-
39749116851
-
LuxG is a functioning flavin reductase for bacterial luminescence
-
Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P. LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 2008;190:1531-8.
-
(2008)
J Bacteriol
, vol.190
, pp. 1531-1538
-
-
Nijvipakul, S.1
Wongratana, J.2
Suadee, C.3
Entsch, B.4
Ballou, D.P.5
Chaiyen, P.6
|