-
2
-
-
0034686050
-
-
M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, and P. Ajayan, Science 288, 1226 (2000).
-
(2000)
Science
, vol.288
, pp. 1226
-
-
Terrones, M.1
Terrones, H.2
Banhart, F.3
Charlier, J.-C.4
Ajayan, P.5
-
3
-
-
85038315605
-
-
unpublished
-
M. Terrones, F. Banhart, N. Grobert, J. -C. Charlier, H. Terrones and P. M. Ajayan (unpublished).
-
-
-
Terrones, M.1
Banhart, F.2
Grobert, N.3
Charlier, J.-C.4
Terrones, H.5
Ajayan, P.M.6
-
4
-
-
0034428961
-
-
H. Stahl, J. Appenzeller, R. Martel, P. Avouris, and B. Lengeler, Phys. Rev. Lett. 85, 5186 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 5186
-
-
Stahl, H.1
Appenzeller, J.2
Martel, R.3
Avouris, P.4
Lengeler, B.5
-
6
-
-
0000789246
-
-
C.-H. Kiang, W. Goddard, R. Beyers, and D. Bethune, J. Phys. Chem. 100, 3749 (1996).
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 3749
-
-
Kiang, C.-H.1
Goddard, W.2
Beyers, R.3
Bethune, D.4
-
7
-
-
0032651458
-
-
J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, Appl. Phys. A: Mater. Sci. Process. A69, 255 (1999).
-
(1999)
Appl. Phys. A: Mater. Sci. Process.
, vol.A69
, pp. 255
-
-
Salvetat, J.P.1
Bonard, J.M.2
Thomson, N.H.3
Kulik, A.J.4
Forro, L.5
Benoit, W.6
Zuppiroli, L.7
-
8
-
-
0000794901
-
-
A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schonenberger, J.-P. Salvetat, J.-M. Bonard, and L. Forro, Appl. Phys. Lett. 73, 274 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 274
-
-
Bachtold, A.1
Henny, M.2
Terrier, C.3
Strunk, C.4
Schonenberger, C.5
Salvetat, J.-P.6
Bonard, J.-M.7
Forro, L.8
-
10
-
-
0000670356
-
-
Wan Soo Yun, Jinhee Kim, Kang Ho Park, Jeong Sook Ha, Young Jo Ko, Kyoungwan Park, Seong Keun Kim, Yong Joo Doh, Hu Jong Lee, J.P. Salvetat, and L. Forro, J. Vac. Sci. Technol. A 18, 1329 (2000).
-
(2000)
J. Vac. Sci. Technol. A
, vol.18
, pp. 1329
-
-
Yun, W.S.1
Kim, J.2
Park, K.H.3
Jeong Sook Ha4
Ko, Y.J.5
Park, K.6
Kim, S.K.7
Yong Joo Doh8
Lee, H.J.9
Salvetat, J.P.10
Forro, L.11
-
11
-
-
84988747587
-
-
A.V. Krasheninnikov, K. Nordlund, M. Sirviö, E. Salonen, and J. Keinonen, Phys. Rev. B 63, 245405 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 245405
-
-
Krasheninnikov, A.V.1
Nordlund, K.2
Sirviö, M.3
Salonen, E.4
Keinonen, J.5
-
16
-
-
3342918541
-
-
H.J. Choi, J. Ihm, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 84, 2917 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2917
-
-
Choi, H.J.1
Ihm, J.2
Louie, S.G.3
Cohen, M.L.4
-
18
-
-
0034900619
-
-
D. Orlikowski, H. Mehrez, J. Taylor, H. Guo, J. Wang, and C. Roland, Phys. Rev. B 63, 155412 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 155412
-
-
Orlikowski, D.1
Mehrez, H.2
Taylor, J.3
Guo, H.4
Wang, J.5
Roland, C.6
-
19
-
-
0000073210
-
-
L.C. Venema, J.W. Janssen, M.R. Buitelaar, J.W.G. Wildöer, S.G. Lemay, L.P. Kouwenhoven, and C. Dekker, Phys. Rev. B 62, 5238 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. 5238
-
-
Venema, L.C.1
Janssen, J.W.2
Buitelaar, M.R.3
Wildöer, J.W.G.4
Lemay, S.G.5
Kouwenhoven, L.P.6
Dekker, C.7
-
20
-
-
0001651626
-
-
U. Hubler, P. Jess, H. Lang, H.-J. Güntherodt, J.-P. Salvetat, and L. Forró, Carbon 36, 697 (1998).
-
(1998)
Carbon
, vol.36
, pp. 697
-
-
Hubler, U.1
Jess, P.2
Lang, H.3
Güntherodt, H.-J.4
Salvetat, J.-P.5
Forró, L.6
-
21
-
-
0034531904
-
-
S. Paulson, A. Helser, M. Nardelli, R. Taylor, M. Falvo, R. Superfine, and S. Washburn, Science 1742, 1742 (2000).
-
(2000)
Science
, vol.1742
, pp. 1742
-
-
Paulson, S.1
Helser, A.2
Nardelli, M.3
Taylor, R.4
Falvo, M.5
Superfine, R.6
Washburn, S.7
-
24
-
-
0001068148
-
-
Y. Xia, Y. Ma, Y. Xing, Y. Mu, C. Tan, and L. Me, Phys. Rev. B 61, 11 088 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 11 088
-
-
Xia, Y.1
Ma, Y.2
Xing, Y.3
Mu, Y.4
Tan, C.5
Me, L.6
-
27
-
-
0001427234
-
-
K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T. Diaz de la Rubia, and J. Tarus, Phys. Rev. B 57, 7556 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 7556
-
-
Nordlund, K.1
Ghaly, M.2
Averback, R.S.3
Caturla, M.4
Diaz de la Rubia, T.5
Tarus, J.6
-
29
-
-
0000484588
-
-
K. Nordlund, L. Wei, Y. Zhong, and R.S. Averback, Phys. Rev. B 57, 13 965 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 13 965
-
-
Nordlund, K.1
Wei, L.2
Zhong, Y.3
Averback, R.S.4
-
30
-
-
0001375779
-
-
E. Mizoguti, F. Nihey, M. Yudasaka, S. Iijima, T. Ichihashi, and K. Nakamura, Chem. Phys. Lett. 321, 297 (2000).
-
(2000)
Chem. Phys. Lett.
, vol.321
, pp. 297
-
-
Mizoguti, E.1
Nihey, F.2
Yudasaka, M.3
Iijima, S.4
Ichihashi, T.5
Nakamura, K.6
-
34
-
-
33750587438
-
-
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, J. Chem. Phys. 81, 3684 (1984).
-
(1984)
J. Chem. Phys.
, vol.81
, pp. 3684
-
-
Berendsen, H.J.C.1
Postma, J.P.M.2
van Gunsteren, W.F.3
DiNola, A.4
Haak, J.R.5
-
37
-
-
85038271830
-
-
Here we consider a cross section for the defect production in the nanotube. In our model the threshold for displacing an atom in the nanotube is 34.6 eV. We estimated the cross section for defect production by calculating the maximum impact parameter for which an Ar ion transfers at least 35 eV to a C atom in the nanotube in a binary collision [Eqs. (2-62),(2-64) in Ref. 33]. This cross section has a maximum at about 400 eV. The reason why the damage level does not drop much at higher energies is that some of the carbon recoils hit other parts of the nanotube and cause additional damage
-
Here we consider a cross section for the defect production in the nanotube. In our model the threshold for displacing an atom in the nanotube is 34.6 eV. We estimated the cross section for defect production by calculating the maximum impact parameter for which an Ar ion transfers at least 35 eV to a C atom in the nanotube in a binary collision [Eqs. (2-62),(2-64) in Ref. 33]. This cross section has a maximum at about 400 eV. The reason why the damage level does not drop much at higher energies is that some of the carbon recoils hit other parts of the nanotube and cause additional damage.
-
-
-
-
38
-
-
85038291584
-
-
Similar to graphite, the mobility of vacancies in carbon nanotubes is very low. The mobility of interstitials is much higher and depends on the direction of motion (along the circumference of the nanotube or along its axis), the nanotube diameter and its chirality. A detailed study of this issue will be published elsewhere
-
Similar to graphite, the mobility of vacancies in carbon nanotubes is very low. The mobility of interstitials is much higher and depends on the direction of motion (along the circumference of the nanotube or along its axis), the nanotube diameter and its chirality. A detailed study of this issue will be published elsewhere.
-
-
-
-
39
-
-
85038334771
-
-
unpublished
-
M. López, A. Rubio, J.A. Alonso, S. Lefrant, K. Méténier, and S. Bonnamy (unpublished).
-
-
-
López, M.1
Rubio, A.2
Alonso, J.A.3
Lefrant, S.4
Méténier, K.5
Bonnamy, S.6
-
40
-
-
0030396450
-
-
B. Satishkumar, E. Vogl, A. Govindaraj, and C. Rao, J. Phys. D 29, 3173 (1996).
-
(1996)
J. Phys. D
, vol.29
, pp. 3173
-
-
Satishkumar, B.1
Vogl, E.2
Govindaraj, A.3
Rao, C.4
-
41
-
-
0035794732
-
-
M.J. López, A. Rubio, J.A. Alonso, L.-C. Qin, and S. Iijima, Phys. Rev. Lett. 86, 3056 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 3056
-
-
López, M.J.1
Rubio, A.2
Alonso, J.A.3
Qin, L.-C.4
Iijima, S.5
|