메뉴 건너뛰기




Volumn 6, Issue 6, 2016, Pages

Structural and biochemical analyses of monoubiquitinated human histones H2B and H4

Author keywords

Chromatin; Crystal structure; Histone; Nucleosome; Ubiquitin

Indexed keywords

HISTONE;

EID: 84978245550     PISSN: None     EISSN: 20462441     Source Type: Journal    
DOI: 10.1098/rsob.160090     Document Type: Article
Times cited : (35)

References (50)
  • 2
    • 0025837183 scopus 로고
    • The nucleosomal core histone octamer at 3.1 Å resolution: A tripartite protein assembly and a lefthanded superhelix
    • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN. 1991 The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a lefthanded superhelix. Proc. Natl Acad. Sci. USA 88, 10 148-10 152. (doi:10.1073/pnas.88.22. 10148)
    • (1991) Proc. Natl Acad. Sci. USA , vol.88 , pp. 10148-10152
    • Arents, G.1    Burlingame, R.W.2    Wang, B.C.3    Love, W.E.4    Moudrianakis, E.N.5
  • 3
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 Å resolution
    • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997 Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251-260. (doi:10.1038/38444)
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mäder, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 4
    • 0036307707 scopus 로고    scopus 로고
    • Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution
    • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. 2002 Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097- 1113. (doi:10.1016/S0022-2836(02)00386-8)
    • (2002) J. Mol. Biol. , vol.319 , pp. 1097-1113
    • Davey, C.A.1    Sargent, D.F.2    Luger, K.3    Maeder, A.W.4    Richmond, T.J.5
  • 5
    • 77957367439 scopus 로고    scopus 로고
    • Structure of RCC1 chromatin factor bound to the nucleosome core particle
    • Makde RD, England JR, Yennawar HP, Tan S. 2010 Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562-566. (doi:10.1038/nature09321)
    • (2010) Nature , vol.467 , pp. 562-566
    • Makde, R.D.1    England, J.R.2    Yennawar, H.P.3    Tan, S.4
  • 6
    • 0031604187 scopus 로고    scopus 로고
    • The nucleosome: A powerful regulator of transcription
    • Wolffe AP, Kurumizaka H. 1998 The nucleosome: a powerful regulator of transcription. Prog. Nucleic Acid Res. Mol. Biol. 61, 379-422. (doi:10.1016/ S0079-6603(08)60832-6)
    • (1998) Prog. Nucleic Acid Res. Mol. Biol. , vol.61 , pp. 379-422
    • Wolffe, A.P.1    Kurumizaka, H.2
  • 7
    • 84861531483 scopus 로고    scopus 로고
    • Overcoming the nucleosome barrier during transcript elongation
    • Petesch SJ, Lis JT. 2012 Overcoming the nucleosome barrier during transcript elongation. Trends Genet. 28, 285-294. (doi:10.1016/j.tig.2012.02.005)
    • (2012) Trends Genet , vol.28 , pp. 285-294
    • Petesch, S.J.1    Lis, J.T.2
  • 8
    • 84877836392 scopus 로고    scopus 로고
    • Mechanisms by which transcription factors gain access to target sequence elements in chromatin
    • Guertin MJ, Lis JT. 2013 Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr. Opin. Genet. Dev. 23, 116-123. (doi:10.1016/j.gde.2012.11.008)
    • (2013) Curr. Opin. Genet. Dev. , vol.23 , pp. 116-123
    • Guertin, M.J.1    Lis, J.T.2
  • 9
    • 84918527386 scopus 로고    scopus 로고
    • Pioneer transcription factors in cell reprogramming
    • Iwafuchi-Doi M, Zaret KS. 2014 Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679-2692. (doi:10.1101/gad.253443.114)
    • (2014) Genes Dev. , vol.28 , pp. 2679-2692
    • Iwafuchi-Doi, M.1    Zaret, K.S.2
  • 10
    • 84923782190 scopus 로고    scopus 로고
    • Histone exchange, chromatin structure and the regulation of transcription
    • Venkatesh S, Workman JL. 2015 Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178- 189. (doi:10.1038/nrm3941)
    • (2015) Nat. Rev. Mol. Cell Bio.l , vol.16 , pp. 178-189
    • Venkatesh, S.1    Workman, J.L.2
  • 11
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl BD, Allis CD. 2000 The language of covalent histone modifications. Nature 403, 41-45. (doi:10. 1038/47412)
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 12
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T. 2007 Chromatin modifications and their function. Cell 128, 693-705. (doi:10.1016/j. cell.2007.02.005)
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 13
    • 35848951163 scopus 로고    scopus 로고
    • Covalent modifications of histones during development and disease pathogenesis
    • Bhaumik SR, Smith E, Shilatifard A. 2007 Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008-1016. (doi:10.1038/nsmb1337)
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 1008-1016
    • Bhaumik, S.R.1    Smith, E.2    Shilatifard, A.3
  • 14
    • 79952534189 scopus 로고    scopus 로고
    • Regulation of chromatin by histone modifications
    • Bannister AJ, Kouzarides T. 2011 Regulation of chromatin by histone modifications. Cell Res. 21, 381-395. (doi:10.1038/cr.2011.22)
    • (2011) Cell Res. , vol.21 , pp. 381-395
    • Bannister, A.J.1    Kouzarides, T.2
  • 15
    • 84926663899 scopus 로고    scopus 로고
    • Histone acylation beyond acetylation: Terra incognita in chromatin biology
    • Rousseaux S, Khochbin S. 2015 Histone acylation beyond acetylation: terra incognita in chromatin biology. Cell J. 17, 1-6.
    • (2015) Cell J. , vol.17 , pp. 1-6
    • Rousseaux, S.1    Khochbin, S.2
  • 16
    • 84861647319 scopus 로고    scopus 로고
    • A unified phylogeny-based nomenclature for histone variants
    • Talbert PB et al. 2012 A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 5, 7. (doi:10.1186/1756-8935-5-7)
    • (2012) Epigenetics Chromatin , vol.5 , pp. 7
    • Talbert, P.B.1
  • 17
    • 84873526311 scopus 로고    scopus 로고
    • Current progress on structural studies of nucleosomes containing histone H3 variants
    • Kurumizaka H, Horikoshi N, Tachiwana H, Kagawa W. 2013 Current progress on structural studies of nucleosomes containing histone H3 variants. Curr. Opin. Struct. Biol. 23, 109-115. (doi:10.1016/j.sbi. 2012.10.009)
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 109-115
    • Kurumizaka, H.1    Horikoshi, N.2    Tachiwana, H.3    Kagawa, W.4
  • 18
    • 84899415723 scopus 로고    scopus 로고
    • Every amino acid matters: Essential contributions of histone variants to mammalian development and disease
    • Maze I, Noh KM, Soshnev AA, Allis CD. 2014 Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15, 259-271. (doi:10. 1038/nrg3673)
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 259-271
    • Maze, I.1    Noh, K.M.2    Soshnev, A.A.3    Allis, C.D.4
  • 19
    • 84892993229 scopus 로고    scopus 로고
    • Histone variants: The tricksters of the chromatin world
    • Volle C, Dalal Y. 2014 Histone variants: the tricksters of the chromatin world. Curr. Opin. Genet. Dev. 25, 8-14. (doi:10.1016/j.gde.2013.11.006)
    • (2014) Curr. Opin. Genet. Dev. , vol.25 , pp. 8-14
    • Volle, C.1    Dalal, Y.2
  • 20
    • 84899916209 scopus 로고    scopus 로고
    • Histone variants at the transcription start-site
    • Soboleva TA, Nekrasov M, Ryan DP, Tremethick DJ. 2014 Histone variants at the transcription start-site. Trends Genet. 30, 199-209. (doi:10.1016/j.tig.2014. 03.002)
    • (2014) Trends Genet , vol.30 , pp. 199-209
    • Soboleva, T.A.1    Nekrasov, M.2    Ryan, D.P.3    Tremethick, D.J.4
  • 21
    • 84927689550 scopus 로고    scopus 로고
    • Environmental responses mediated by histone variants
    • Talbert PB, Henikoff S. 2014 Environmental responses mediated by histone variants. Trends Cell Biol. 24, 642-650. (doi:10.1016/j.tcb. 2014.07.006)
    • (2014) Trends Cell Biol. , vol.24 , pp. 642-650
    • Talbert, P.B.1    Henikoff, S.2
  • 22
    • 84863302006 scopus 로고    scopus 로고
    • Shaping the landscape: Mechanistic consequences of ubiquitin modification of chromatin
    • Braun S, Madhani HD. 2012 Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Rep. 13, 619-630. (doi:10. 1038/embor.2012.78)
    • (2012) EMBO Rep. , vol.13 , pp. 619-630
    • Braun, S.1    Madhani, H.D.2
  • 23
    • 43149122898 scopus 로고    scopus 로고
    • Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells
    • Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M. 2008 Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat. Cell Biol. 10, 483-488. (doi:10.1038/ncb1712)
    • (2008) Nat. Cell Biol. , vol.10 , pp. 483-488
    • Minsky, N.1    Shema, E.2    Field, Y.3    Schuster, M.4    Segal, E.5    Oren, M.6
  • 24
    • 53549112774 scopus 로고    scopus 로고
    • The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression
    • Shema E et al. 2008 The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev. 22, 2664-2676. (doi:10.1101/gad.1703008)
    • (2008) Genes Dev. , vol.22 , pp. 2664-2676
    • Shema, E.1
  • 25
    • 84861843882 scopus 로고    scopus 로고
    • H2B monoubiquitylation is a 5'-enriched active transcription mark and correlates with exonintron structure in human cells
    • Jung I, Kim SK, Kim M, Han YM, Kim YS, Kim D, Lee D. 2012 H2B monoubiquitylation is a 5'-enriched active transcription mark and correlates with exonintron structure in human cells. Genome Res. 22, 1026-1035. (doi:10.1101/gr.120634.111)
    • (2012) Genome Res. , vol.22 , pp. 1026-1035
    • Jung, I.1    Kim, S.K.2    Kim, M.3    Han, Y.M.4    Kim, Y.S.5    Kim, D.6    Lee, D.7
  • 26
    • 84891023280 scopus 로고    scopus 로고
    • Linker histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation
    • Kim K, Lee B, Kim J, Choi J, Kim JM, Xiong Y, Roeder RG, An W. 2013 Linker histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation. Cell Rep. 5, 1690-1703. (doi:10.1016/j.celrep.2013.11.038)
    • (2013) Cell Rep. , vol.5 , pp. 1690-1703
    • Kim, K.1    Lee, B.2    Kim, J.3    Choi, J.4    Kim, J.M.5    Xiong, Y.6    Roeder, R.G.7    An, W.8
  • 27
    • 7744228427 scopus 로고    scopus 로고
    • Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation
    • de Napoles M, Mermoud JE, Wakao R, Tang YA. 2004 Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663- 679. (doi:10.1016/j.devcel.2004.10.005)
    • (2004) Dev. Cell , vol.7 , pp. 663-679
    • De Napoles, M.1    Mermoud, J.E.2    Wakao, R.3    Tang, Y.A.4
  • 28
    • 11144237618 scopus 로고    scopus 로고
    • Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation
    • Fang J, Chen T, Chadwick B, Li E, Zhang Y. 2004 Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J. Biol. Chem. 279, 52 812-52 815. (doi:10.1074/jbc.C400493200)
    • (2004) J. Biol. Chem , vol.279 , pp. 52812-52815
    • Fang, J.1    Chen, T.2    Chadwick, B.3    Li, E.4    Zhang, Y.5
  • 29
    • 29144487990 scopus 로고    scopus 로고
    • Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing
    • Cao R, Tsukada YI, Zhang Y. 2005 Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845-854. (doi:10.1016/j. molcel.2005.12.002)
    • (2005) Mol. Cell , vol.20 , pp. 845-854
    • Cao, R.1    Tsukada, Y.I.2    Zhang, Y.3
  • 32
    • 77949874828 scopus 로고    scopus 로고
    • Disulfide-directed histone ubiquitylation reveals plasticity in hDot1 L activation
    • Chatterjee C, McGinty RK, Fierz B, Muir TW. 2010 Disulfide-directed histone ubiquitylation reveals plasticity in hDot1 L activation. Nat. Chem. Biol. 6, 267-269. (doi:10.1038/nchembio.315)
    • (2010) Nat. Chem. Biol , vol.6 , pp. 267-269
    • Chatterjee, C.1    McGinty, R.K.2    Fierz, B.3    Muir, T.W.4
  • 33
    • 84927664357 scopus 로고    scopus 로고
    • A method for evaluating nucleosome stability with a protein-binding fluorescent dye
    • Taguchi H, Horikoshi N, Arimura Y, Kurumizaka H. 2014 A method for evaluating nucleosome stability with a protein-binding fluorescent dye. Methods 70, 119-126. (doi:10.1016/j.ymeth.2014.08.019)
    • (2014) Methods , vol.70 , pp. 119-126
    • Taguchi, H.1    Horikoshi, N.2    Arimura, Y.3    Kurumizaka, H.4
  • 35
    • 84957916919 scopus 로고    scopus 로고
    • Structural basis for histone H2B deubiquitination by the SAGA DUB module
    • Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. 2016 Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351, 725- 728. (doi:10.1126/science. aac5681)
    • (2016) Science , vol.351 , pp. 725-728
    • Morgan, M.T.1    Haj-Yahya, M.2    Ringel, A.E.3    Bandi, P.4    Brik, A.5    Wolberger, C.6
  • 36
    • 0027412701 scopus 로고
    • Assembly and structural properties of subsaturated chromatin arrays
    • Hansen JC, Lohr D. 1993 Assembly and structural properties of subsaturated chromatin arrays. J. Biol. Chem. 268, 5840-5848.
    • (1993) J. Biol. Chem. , vol.268 , pp. 5840-5848
    • Hansen, J.C.1    Lohr, D.2
  • 37
    • 0242361623 scopus 로고    scopus 로고
    • Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
    • Henry KW. 2003 Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648- 2663. (doi:10.1101/ gad.1144003)
    • (2003) Genes Dev. , vol.17 , pp. 2648-2663
    • Henry, K.W.1
  • 38
    • 33646691283 scopus 로고    scopus 로고
    • Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
    • Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D. 2006 Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703-717. (doi:10.1016/j.cell.2006.04.029)
    • (2006) Cell , vol.125 , pp. 703-717
    • Pavri, R.1    Zhu, B.2    Li, G.3    Trojer, P.4    Mandal, S.5    Shilatifard, A.6    Reinberg, D.7
  • 39
    • 70349731733 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability
    • Chandrasekharan MB, Huang F, Sun ZW. 2009 Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc. Natl Acad. Sci. USA 106, 16 686-16 691. (doi:10. 1073/pnas.0907862106)
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 16686-16691
    • Chandrasekharan, M.B.1    Huang, F.2    Sun, Z.W.3
  • 42
    • 0037436410 scopus 로고    scopus 로고
    • Chromatin fiber folding: Requirement for the histone H4 N-terminal tail
    • Dorigo B, Schalch T, Bystricky K, Richmond TJ. 2003 Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85-96. (doi:10.1016/S0022-2836(03)00025-1)
    • (2003) J. Mol. Biol. , vol.327 , pp. 85-96
    • Dorigo, B.1    Schalch, T.2    Bystricky, K.3    Richmond, T.J.4
  • 43
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Otwinowski Z, Minor W. 1997 Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. (doi:10.1107/ S0909049505038665)
    • (1997) Methods Enzymol , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 46
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams PD et al. 2010 PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. (doi:10.1107/ S0907444909052925)
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 47
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • Emsley P, Cowtan K. 2004 Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. (doi:10.1107/ S0907444904019158)
    • (2004) Acta Crystallogr. D Biol. Crystallogr , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 49
    • 84957024654 scopus 로고    scopus 로고
    • Relaxed chromatin formation and weak suppression of homologous pairing by the testis-specific linker histone H1T
    • Machida S, Hayashida R, Takaku M, Fukuto A, Sun J, Kinomura A, Tashiro S, Kurumizaka H. 2016 Relaxed chromatin formation and weak suppression of homologous pairing by the testis-specific linker histone H1T. Biochemistry 55, 637- 646. (doi:10. 1021/acs.biochem.5b01126)
    • (2016) Biochemistry , vol.55 , pp. 637-646
    • Machida, S.1    Hayashida, R.2    Takaku, M.3    Fukuto, A.4    Sun, J.5    Kinomura, A.6    Tashiro, S.7    Kurumizaka, H.8
  • 50
    • 8844265931 scopus 로고    scopus 로고
    • Sedimentation velocity analysis of highly heterogeneous systems
    • Demeler B, van Holde KE. 2004 Sedimentation velocity analysis of highly heterogeneous systems. Anal. Biochem. 335, 279- 288. (doi:10.1016/j.ab. 2004.08.039)
    • (2004) Anal. Biochem. , vol.335 , pp. 279-288
    • Demeler, B.1    Van Holde, K.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.