메뉴 건너뛰기




Volumn 24, Issue 2, 2016, Pages 133-148

Improving accuracy of intrusion detection model using PCA and optimized SVM

Author keywords

Cross validation; Dimensionality reduction; Intrusion detection system; Principal component analysis; Radial basis function kernel; Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER CRIME; MERCURY (METAL); PRINCIPAL COMPONENT ANALYSIS; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84978100714     PISSN: 13301136     EISSN: None     Source Type: Journal    
DOI: 10.20532/cit.2016.1002701     Document Type: Article
Times cited : (76)

References (36)
  • 1
    • 84941079784 scopus 로고    scopus 로고
    • A new approach to intrusion detection using artificial neural networks and fuzzy clustering
    • G. Wang et al., "A new approach to intrusion detection using artificial neural networks and fuzzy clustering", Expert Syst. Appl., vol. 37, pp. 6225-6232, 2010. http://dx.doi.Org/10.1016/j.eswa.2010.02.102
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6225-6232
    • Wang, G.1
  • 3
    • 69249216488 scopus 로고    scopus 로고
    • An adaptive genetic based signature learning system intrusion detection
    • K. Shafi and H. A. Abbass, "An adaptive genetic based signature learning system intrusion detection", Expert Syst. Appl., vol. 36, no. 10, pp. 12036-12043, 2009. http://dx.doi.org/10.1016/j.eswa.2009.03.036
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 12036-12043
    • Shafi, K.1    Abbass, H.A.2
  • 5
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchial clustering
    • L. Khan et al., "A new intrusion detection system using support vector machines and hierarchial clustering", Journal on very large databases, vol. 16, no. 4, pp. 507-521, 2007.
    • (2007) Journal on very large databases , vol.16 , Issue.4 , pp. 507-521
    • Khan, L.1
  • 7
    • 23544449776 scopus 로고    scopus 로고
    • Learning models of network traffic for detecting novel attacks
    • Florida Institute of Technology, Technical report
    • M. Mahoney and P. Chan, "Learning models of network traffic for detecting novel attacks", Florida Institute of Technology, Technical report CS-2001-2, 2002.
    • (2002)
    • Mahoney, M.1    Chan, P.2
  • 8
    • 84863161994 scopus 로고    scopus 로고
    • A method of SVM with normalization in intrusion detection
    • L. Weijun and L. Zhenyu, "A method of SVM with normalization in intrusion detection", Procedia Environmental Sciences, pp. 256-262, 2011. http://dx.doi.org/10.1016/j.proenv.2011.12.040
    • (2011) Procedia Environmental Sciences , pp. 256-262
    • Weijun, L.1    Zhenyu, L.2
  • 9
    • 80054915787 scopus 로고    scopus 로고
    • An Autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
    • A. C. Catania et al., "An Autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection", Expert Systems with Applications, pp. 1822-1829, 2012.
    • (2012) Expert Systems with Applications , pp. 1822-1829
    • Catania, A.C.1
  • 10
    • 84978048370 scopus 로고    scopus 로고
    • Snort [Online]
    • Snort [Online]. Available: https://www.snort.org
  • 11
    • 77953845946 scopus 로고    scopus 로고
    • Analysis of Unsupervised Dimensionality Reduction Techniques
    • C. A. Kumar, "Analysis of Unsupervised Dimensionality Reduction Techniques", Computer Science and Information Systems, vol. 6, no. 2, pp. 217-227, 2009. http://dx.doi.org/10.2298/CSIS0902217K
    • (2009) Computer Science and Information Systems , vol.6 , Issue.2 , pp. 217-227
    • Kumar, C.A.1
  • 13
    • 84894281761 scopus 로고    scopus 로고
    • A novel hybrid KPCA and SVM with GA model for intrusion detection
    • F. Kuang et al., "A novel hybrid KPCA and SVM with GA model for intrusion detection", Applied Soft Computing, pp. 178-184, 2014. http://dx.doi.Org/10.1016/j.asoc.2014.01.028
    • (2014) Applied Soft Computing , pp. 178-184
    • Kuang, F.1
  • 16
    • 84959283089 scopus 로고    scopus 로고
    • Intrusion Detection model using chi-square feature selection and modified naive bayesian classifier
    • March 10-11
    • I. S. Thaseen and C. A. Kumar, "Intrusion Detection model using chi-square feature selection and modified naive bayesian classifier", in Third International Symposium on Big Data and Cloud Computing, March 10-11 2016.
    • (2016) Third International Symposium on Big Data and Cloud Computing
    • Thaseen, I.S.1    Kumar, C.A.2
  • 17
    • 77956613687 scopus 로고    scopus 로고
    • A novel intrusion detection system based on hierarchical clustering and support vector machines
    • S. Horng et al., "A novel intrusion detection system based on hierarchical clustering and support vector machines", Expert Systems with Applications, vol. 38, no. 1, pp. 306-313, 2011. http://dx.doi.Org/10.1016/j.eswa.2010.06.066
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 306-313
    • Horng, S.1
  • 18
    • 33750514606 scopus 로고    scopus 로고
    • Modeling Intrusion detection system using hybrid intelligent systems
    • S. Peddabachigiri et al., "Modeling Intrusion detection system using hybrid intelligent systems", Journal of Network and Computer Applications, vol. 30, pp. 114-132, 2007. http://dx.doi.Org/10.1016/j.jnca.2005.06.003
    • (2007) Journal of Network and Computer Applications , vol.30 , pp. 114-132
    • Peddabachigiri, S.1
  • 19
    • 0141797880 scopus 로고    scopus 로고
    • A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data
    • A. M. Eskin and L. Stolfo, "A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data", in Proceedings of Applications of Data Mining in Computer Security, 2002, pp. 174-194.
    • (2002) Proceedings of Applications of Data Mining in Computer Security , pp. 174-194
    • Eskin, A.M.1    Stolfo, L.2
  • 20
    • 81855197007 scopus 로고    scopus 로고
    • An efficient intrusion detection system based on support vector machines and gradually feature removal method
    • Y. Li et al., "An efficient intrusion detection system based on support vector machines and gradually feature removal method", Expert Systems with Applications, vol. 39, 424-430, 2012. http://dx.doi.org/10.1016/j.eswa.2011.07.032
    • (2012) Expert Systems with Applications , vol.39 , pp. 424-430
    • Li, Y.1
  • 22
    • 84864772502 scopus 로고    scopus 로고
    • An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection
    • S.-W. Lin et al., "An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection", Applied Soft Computing, pp. 3285-3290, 2012.
    • (2012) Applied Soft Computing , pp. 3285-3290
    • Lin, S.-W.1
  • 23
    • 33847406678 scopus 로고    scopus 로고
    • An intrusion detection model based on the PCA and neural networks
    • G. Liu et al., "An intrusion detection model based on the PCA and neural networks", Neurocomputing, vol. 70, pp. 1561-1568, 2007. http://dx.doi.org/10.1016/j.neucom.2006.10.146
    • (2007) Neurocomputing , vol.70 , pp. 1561-1568
    • Liu, G.1
  • 24
    • 17844372755 scopus 로고    scopus 로고
    • Empirical evaluation of SVM based masquerade detection using UNIX commands
    • H. S. Kim and S.-D. Cha, "Empirical evaluation of SVM based masquerade detection using UNIX commands", Computers and Security, vol. 24, no. 2, pp. 160-168, 2005. http://dx.doi.org/10.1016/j.cose.2004.08.007
    • (2005) Computers and Security , vol.24 , Issue.2 , pp. 160-168
    • Kim, H.S.1    Cha, S.-D.2
  • 25
    • 84907481520 scopus 로고    scopus 로고
    • Of daemons and men: A file system approach towards intrusion detection
    • G. Mamalakis et al., "Of daemons and men: A file system approach towards intrusion detection", Applied Soft Computing, vol. 25, pp. 1-14, 2014. http://dx.doi.org/10.1016/j.asoc.20l4.07.026
    • (2014) Applied Soft Computing , vol.25 , pp. 1-14
    • Mamalakis, G.1
  • 26
    • 84938578413 scopus 로고    scopus 로고
    • Feature Section Based Hybrid Anomaly Intrusion Detection System Using K Means and RBF Kernel Function
    • U. Ravale et al., "Feature Section Based Hybrid Anomaly Intrusion Detection System Using K Means and RBF Kernel Function", Procedia Computer Science, vol. 45, pp. 428-435, 2015. http://dx.doi.Org/l0.1016/j.procs.2015.03.174
    • (2015) Procedia Computer Science , vol.45 , pp. 428-435
    • Ravale, U.1
  • 27
    • 84961308100 scopus 로고    scopus 로고
    • MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of Network Intrusion Detection
    • J. M. Fossaceca et al., "MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of Network Intrusion Detection", Expert Systems with Applications, vol. 42, pp. 4062-4080, 2015. http://dx.doi.Org/10.1016/j.eswa.2014.12.040
    • (2015) Expert Systems with Applications , vol.42 , pp. 4062-4080
    • Fossaceca, J.M.1
  • 28
    • 84935592025 scopus 로고    scopus 로고
    • PCA filtering and probabilistic SOM for network intrusion detection
    • E. De La Hoz et al., "PCA filtering and probabilistic SOM for network intrusion detection", NeuroComputing, vol. 164, pp. 71-81, 2015. http://dx.doi.Org/10.1016/j.neucom.2014.09.083
    • (2015) NeuroComputing , vol.164 , pp. 71-81
    • De La Hoz, E.1
  • 32
    • 21844451952 scopus 로고    scopus 로고
    • Diagnosing Network-Wide Traffic Anomalies
    • October
    • A. Lakhina et al., "Diagnosing Network-Wide Traffic Anomalies", ACM SIGCOMM Compurer Communication Review, vol. 34, no. 4, pp. 219-230, October 2004.
    • (2004) ACM SIGCOMM Compurer Communication Review , vol.34 , Issue.4 , pp. 219-230
    • Lakhina, A.1
  • 33
    • 0141522774 scopus 로고    scopus 로고
    • Multi Class support vector machine implementation to intrusion detection
    • July
    • T. Ambwani, "Multi Class support vector machine implementation to intrusion detection", in The international joint conference on neural networks, vol. 3, July 2003, pp. 2300-2305. http://dx.doi.org/10.1109/rjcnn.2003.1223770
    • (2003) The international joint conference on neural networks , vol.3 , pp. 2300-2305
    • Ambwani, T.1
  • 35
    • 84978048780 scopus 로고    scopus 로고
    • [Online]
    • Information Security Centre of Excellence (ISCX). UNB ISCX NSL-KDD DataSet [Online]. Available: http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html
    • UNB ISCX NSL-KDD DataSet
  • 36
    • 84978146211 scopus 로고    scopus 로고
    • [Online]
    • Gure KDD cup database [Online]. Available: http://www.sc.ehu.es/acwaldap/
    • Gure KDD cup database


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.