-
1
-
-
33947223647
-
Pharmacogenomics: the promise of personalized medicine
-
Mancinelli L, Cronin M, Sadée W. Pharmacogenomics: the promise of personalized medicine. Aaps Pharmsci. 2000; 2(1): 29–41.
-
(2000)
Aaps Pharmsci
, vol.2
, Issue.1
, pp. 29-41
-
-
Mancinelli, L.1
Cronin, M.2
Sadée, W.3
-
2
-
-
84892649479
-
Standards of medical care in diabetes 2014
-
American Diabetes Association and others
-
American Diabetes Association and others. Standards of medical care in diabetes 2014. Diabetes Care. 2014; 37(Supplement 1): S14–S80.
-
(2014)
Diabetes Care
, vol.37
, pp. S14-S80
-
-
-
3
-
-
77952507615
-
Breast cancer in the personal genomics Era
-
Ellsworth RE, Decewicz DJ, Shriver CD, Ellsworth DL. Breast cancer in the personal genomics Era. Current Genomics. 2010; 11(3): 146–161.
-
(2010)
Current Genomics
, vol.11
, Issue.3
, pp. 146-161
-
-
Ellsworth, R.E.1
Decewicz, D.J.2
Shriver, C.D.3
Ellsworth, D.L.4
-
4
-
-
34548152541
-
Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility
-
Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. Journal of Clinical Oncology. 2007; 25(23): 3525–3533.
-
(2007)
Journal of Clinical Oncology
, vol.25
, Issue.23
, pp. 3525-3533
-
-
Telli, M.L.1
Hunt, S.A.2
Carlson, R.W.3
Guardino, A.E.4
-
5
-
-
69249219296
-
et al. Association of cytochrome p450 2c19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy
-
Shuldiner AR, OConnell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, Damcott CM, Pakyz R, Tantry US, Gibson, Q,. et al. Association of cytochrome p450 2c19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. Jama. 2009; 302(8): 849–857.
-
(2009)
Jama
, vol.302
, Issue.8
, pp. 849-857
-
-
Shuldiner, A.R.1
OConnell, J.R.2
Bliden, K.P.3
Gandhi, A.4
Ryan, K.5
Horenstein, R.B.6
Damcott, C.M.7
Pakyz, R.8
Tantry, U.S.9
Gibson, Q.10
-
6
-
-
1842453957
-
Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test
-
Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA, Peters TJ. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. Journal of Clinical Epidemiology. 2004; 57(3): 229–236.
-
(2004)
Journal of Clinical Epidemiology
, vol.57
, Issue.3
, pp. 229-236
-
-
Brookes, S.T.1
Whitely, E.2
Egger, M.3
Smith, G.D.4
Mulheran, P.A.5
Peters, T.J.6
-
7
-
-
33645895554
-
The challenge of subgroup analyses-reporting without distorting
-
Lagakos SW. The challenge of subgroup analyses-reporting without distorting. New England Journal of Medicine. 2006; 354(16): 1667.
-
(2006)
New England Journal of Medicine
, vol.354
, Issue.16
, pp. 1667
-
-
Lagakos, S.W.1
-
8
-
-
78649932986
-
The mean does not mean as much anymore: finding sub-groups for tailored therapeutics
-
Ruberg SJ, Chen L, Wang Y. The mean does not mean as much anymore: finding sub-groups for tailored therapeutics. Clinical Trials. 2010; 7(5): 574–583.
-
(2010)
Clinical Trials
, vol.7
, Issue.5
, pp. 574-583
-
-
Ruberg, S.J.1
Chen, L.2
Wang, Y.3
-
9
-
-
11844302840
-
Subgroup analysis in randomised controlled trials: importance, indications, and interpretation
-
Rothwell PM. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. The Lancet. 2005; 365(9454): 176–186.
-
(2005)
The Lancet
, vol.365
, Issue.9454
, pp. 176-186
-
-
Rothwell, P.M.1
-
10
-
-
36348939350
-
Statistics in medicine?reporting of subgroup analyses in clinical trials
-
Wang R, Lagakos SW, Ware JH, Hunter DJ, Drazen JM. Statistics in medicine?reporting of subgroup analyses in clinical trials. New England Journal of Medicine. 2007; 357(21): 2189–2194.
-
(2007)
New England Journal of Medicine
, vol.357
, Issue.21
, pp. 2189-2194
-
-
Wang, R.1
Lagakos, S.W.2
Ware, J.H.3
Hunter, D.J.4
Drazen, J.M.5
-
11
-
-
61749086397
-
Subgroup analysis via recursive partitioning
-
Su X, Tsai CL, Wang H, Nickerson DM, Li B. Subgroup analysis via recursive partitioning. The Journal of Machine Learning Research. 2009; 10: 141–158.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 141-158
-
-
Su, X.1
Tsai, C.L.2
Wang, H.3
Nickerson, D.M.4
Li, B.5
-
12
-
-
80051894060
-
Subgroup identification based on differential effect search a recursive partitioning method for establishing response to treatment in patient subpopulations
-
Lipkovich I, Dmitrienko A, Denne J, Enas G. Subgroup identification based on differential effect search a recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine. 2011; 30(21): 2601–2621.
-
(2011)
Statistics in Medicine
, vol.30
, Issue.21
, pp. 2601-2621
-
-
Lipkovich, I.1
Dmitrienko, A.2
Denne, J.3
Enas, G.4
-
13
-
-
84920260494
-
A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment—subgroup interactions
-
Doove LL, Dusseldorp E, Van Deun K, Van Mechelen I. A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment—subgroup interactions. Advances in Data Analysis and Classification. 2014; 8(4): 403–425.
-
(2014)
Advances in Data Analysis and Classification
, vol.8
, Issue.4
, pp. 403-425
-
-
Doove, L.L.1
Dusseldorp, E.2
Van Deun, K.3
Van Mechelen, I.4
-
14
-
-
79953133534
-
Analysis of randomized comparative clinical trial data for personalized treatment selections
-
Cai T, Tian L, Wong PH, Wei LJ. Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics. 2011; 12(2): 270–282.
-
(2011)
Biostatistics
, vol.12
, Issue.2
, pp. 270-282
-
-
Cai, T.1
Tian, L.2
Wong, P.H.3
Wei, L.J.4
-
15
-
-
84890112672
-
Effectively selecting a target population for a future comparative study
-
Zhao L, Tian L, Cai T, Claggett B, Wei LJ. Effectively selecting a target population for a future comparative study. Journal of the American Statistical Association. 2013; 108(502): 527–539.
-
(2013)
Journal of the American Statistical Association
, vol.108
, Issue.502
, pp. 527-539
-
-
Zhao, L.1
Tian, L.2
Cai, T.3
Claggett, B.4
Wei, L.J.5
-
16
-
-
80053563163
-
Subgroup identification from randomized clinical trial data
-
Foster JC, Taylor JM, Ruberg SJ. Subgroup identification from randomized clinical trial data. Statistics in Medicine. 2011; 30(24): 2867–2880.
-
(2011)
Statistics in Medicine
, vol.30
, Issue.24
, pp. 2867-2880
-
-
Foster, J.C.1
Taylor, J.M.2
Ruberg, S.J.3
-
17
-
-
84884694320
-
Local control for identifying subgroups of interest in observational research: persistence of treatment for major depressive disorder
-
Faries DE, Chen Y, Lipkovich I, Zagar A, Liu X, Obenchain RL. Local control for identifying subgroups of interest in observational research: persistence of treatment for major depressive disorder. International Journal of Methods in Psychiatric Research. 2013; 22: 185–194.
-
(2013)
International Journal of Methods in Psychiatric Research
, vol.22
, pp. 185-194
-
-
Faries, D.E.1
Chen, Y.2
Lipkovich, I.3
Zagar, A.4
Liu, X.5
Obenchain, R.L.6
-
18
-
-
84870707096
-
Performance guarantees for individualized treatment rules
-
Qian M, Murphy SA. Performance guarantees for individualized treatment rules. Annals of Statistics. 2011; 39(2): 1180–1210.
-
(2011)
Annals of Statistics
, vol.39
, Issue.2
, pp. 1180-1210
-
-
Qian, M.1
Murphy, S.A.2
-
19
-
-
84870657864
-
Estimating individualized treatment rules using outcome weighted learning
-
Zhao Y, Zeng D, Rush AJ, Kosorok MR. Estimating individualized treatment rules using outcome weighted learning. Journal of the American Statistical Association. 2012; 107(499): 1106–1118.
-
(2012)
Journal of the American Statistical Association
, vol.107
, Issue.499
, pp. 1106-1118
-
-
Zhao, Y.1
Zeng, D.2
Rush, A.J.3
Kosorok, M.R.4
-
20
-
-
84871667403
-
A robust method for estimating optimal treatment regimes
-
Zhang B, Tsiatis AA, Laber EB, Davidian M. A robust method for estimating optimal treatment regimes. Biometrics. 2012; 68(4): 1010–1018.
-
(2012)
Biometrics
, vol.68
, Issue.4
, pp. 1010-1018
-
-
Zhang, B.1
Tsiatis, A.A.2
Laber, E.B.3
Davidian, M.4
-
21
-
-
84906088229
-
Estimating optimal treatment regimes from a classification perspective
-
Zhang B, Tsiatis AA, Davidian M, Zhang M, Laber E. Estimating optimal treatment regimes from a classification perspective. Statistic. 2012; 1(1): 103–114.
-
(2012)
Statistic
, vol.1
, Issue.1
, pp. 103-114
-
-
Zhang, B.1
Tsiatis, A.A.2
Davidian, M.3
Zhang, M.4
Laber, E.5
-
22
-
-
84941737703
-
Regularized outcome weighted subgroup identification for differential treatment effects
-
Xu Y, Yu M, Zhao YQ, Li Q, Wang S, Shao J. Regularized outcome weighted subgroup identification for differential treatment effects. Biometrics. 2015; 71(3): 645–653.
-
(2015)
Biometrics
, vol.71
, Issue.3
, pp. 645-653
-
-
Xu, Y.1
Yu, M.2
Zhao, Y.Q.3
Li, Q.4
Wang, S.5
Shao, J.6
-
23
-
-
84926625398
-
Simple subgroup approximations to optimal treatment regimes from randomized clinical trial data
-
Foster JC, Taylor JM, Kaciroti N, Nan B. Simple subgroup approximations to optimal treatment regimes from randomized clinical trial data. Biostatistics. 2015; 16(2): 368–382.
-
(2015)
Biostatistics
, vol.16
, Issue.2
, pp. 368-382
-
-
Foster, J.C.1
Taylor, J.M.2
Kaciroti, N.3
Nan, B.4
-
24
-
-
84869413638
-
Facilitating score and causal inference trees for large observational studies
-
Su X, Kang J, Fan J, Levine RA, Yan X. Facilitating score and causal inference trees for large observational studies. The Journal of Machine Learning Research. 2012; 13(1): 2955–2994.
-
(2012)
The Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 2955-2994
-
-
Su, X.1
Kang, J.2
Fan, J.3
Levine, R.A.4
Yan, X.5
-
25
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983; 70(1): 41–55.
-
(1983)
Biometrika
, vol.70
, Issue.1
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
27
-
-
0001425735
-
Recovery of information and adjustment for dependent censoring using surrogate markers
-
Robins JM, Rotnitzky A. Recovery of information and adjustment for dependent censoring using surrogate markers. Aids Epidemiology, Methodological issues. 1992; 3: 297–331.
-
(1992)
Aids Epidemiology, Methodological issues
, vol.3
, pp. 297-331
-
-
Robins, J.M.1
Rotnitzky, A.2
-
29
-
-
84874810512
-
Recent development on statistical methods for personalized medicine discovery
-
Zhao Y, Zeng D. Recent development on statistical methods for personalized medicine discovery. Frontiers of Medicine. 2013; 7(1): 102–110.
-
(2013)
Frontiers of Medicine
, vol.7
, Issue.1
, pp. 102-110
-
-
Zhao, Y.1
Zeng, D.2
-
31
-
-
70149090063
-
-
R Core Team. R Foundation for Statistical Computing, Vienna, Austria
-
R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2014.
-
(2014)
R: A Language and Environment for Statistical Computing
-
-
-
32
-
-
79961240792
-
Rcpp: Seamless r and c++ integration
-
Eddelbuettel D, François R, Allaire J, Chambers J, Bates D, Ushey K. Rcpp: Seamless r and c++ integration. Journal of Statistical Software. 2011; 40(8): 1–18.
-
(2011)
Journal of Statistical Software
, vol.40
, Issue.8
, pp. 1-18
-
-
Eddelbuettel, D.1
François, R.2
Allaire, J.3
Chambers, J.4
Bates, D.5
Ushey, K.6
-
33
-
-
0003684449
-
-
Springer, New York, NY, USA
-
Hastie TJ, Tibshirani RJ, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer: New York, NY, USA, 2011.
-
(2011)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.J.1
Tibshirani, R.J.2
Friedman, J.H.3
-
34
-
-
16844371130
-
A long-term comparison of pioglitazone and gliclazide in patients with type 2 diabetes mellitus: a randomized, double-blind, parallel-group comparison trial
-
Charbonnel BH, Matthews DR, Schernthaner G, Hanefeld M, Brunetti P. A long-term comparison of pioglitazone and gliclazide in patients with type 2 diabetes mellitus: a randomized, double-blind, parallel-group comparison trial. Diabetic Medicine. 2005; 22(4): 399–405.
-
(2005)
Diabetic Medicine
, vol.22
, Issue.4
, pp. 399-405
-
-
Charbonnel, B.H.1
Matthews, D.R.2
Schernthaner, G.3
Hanefeld, M.4
Brunetti, P.5
-
35
-
-
27644473876
-
Responder identification in clinical trials with censored data
-
Kehl V, Ulm K. Responder identification in clinical trials with censored data. Computational Statistics & Data Analysis. 2006; 50(5): 1338–1355.
-
(2006)
Computational Statistics & Data Analysis
, vol.50
, Issue.5
, pp. 1338-1355
-
-
Kehl, V.1
Ulm, K.2
-
36
-
-
84916228481
-
A prim approach to predictive-signature development for patient stratification
-
Chen G, Zhong H, Belousov A, Devanarayan V. A prim approach to predictive-signature development for patient stratification. Statistics in Medicine. 2015; 34(2): 317–342.
-
(2015)
Statistics in Medicine
, vol.34
, Issue.2
, pp. 317-342
-
-
Chen, G.1
Zhong, H.2
Belousov, A.3
Devanarayan, V.4
|