메뉴 건너뛰기




Volumn 35, Issue 19, 2016, Pages 3285-3302

Estimating optimal treatment regimes via subgroup identification in randomized control trials and observational studies

Author keywords

multiple treatments; observational studies; personalized medicine; randomized control trials; subgroup identification; value function

Indexed keywords

BIOLOGICAL MARKER; GLICLAZIDE; HEMOGLOBIN A1C; INSULIN; PIOGLITAZONE;

EID: 84977634231     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6920     Document Type: Article
Times cited : (46)

References (36)
  • 1
    • 33947223647 scopus 로고    scopus 로고
    • Pharmacogenomics: the promise of personalized medicine
    • Mancinelli L, Cronin M, Sadée W. Pharmacogenomics: the promise of personalized medicine. Aaps Pharmsci. 2000; 2(1): 29–41.
    • (2000) Aaps Pharmsci , vol.2 , Issue.1 , pp. 29-41
    • Mancinelli, L.1    Cronin, M.2    Sadée, W.3
  • 2
    • 84892649479 scopus 로고    scopus 로고
    • Standards of medical care in diabetes 2014
    • American Diabetes Association and others
    • American Diabetes Association and others. Standards of medical care in diabetes 2014. Diabetes Care. 2014; 37(Supplement 1): S14–S80.
    • (2014) Diabetes Care , vol.37 , pp. S14-S80
  • 4
    • 34548152541 scopus 로고    scopus 로고
    • Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility
    • Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. Journal of Clinical Oncology. 2007; 25(23): 3525–3533.
    • (2007) Journal of Clinical Oncology , vol.25 , Issue.23 , pp. 3525-3533
    • Telli, M.L.1    Hunt, S.A.2    Carlson, R.W.3    Guardino, A.E.4
  • 6
    • 1842453957 scopus 로고    scopus 로고
    • Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test
    • Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA, Peters TJ. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. Journal of Clinical Epidemiology. 2004; 57(3): 229–236.
    • (2004) Journal of Clinical Epidemiology , vol.57 , Issue.3 , pp. 229-236
    • Brookes, S.T.1    Whitely, E.2    Egger, M.3    Smith, G.D.4    Mulheran, P.A.5    Peters, T.J.6
  • 7
    • 33645895554 scopus 로고    scopus 로고
    • The challenge of subgroup analyses-reporting without distorting
    • Lagakos SW. The challenge of subgroup analyses-reporting without distorting. New England Journal of Medicine. 2006; 354(16): 1667.
    • (2006) New England Journal of Medicine , vol.354 , Issue.16 , pp. 1667
    • Lagakos, S.W.1
  • 8
    • 78649932986 scopus 로고    scopus 로고
    • The mean does not mean as much anymore: finding sub-groups for tailored therapeutics
    • Ruberg SJ, Chen L, Wang Y. The mean does not mean as much anymore: finding sub-groups for tailored therapeutics. Clinical Trials. 2010; 7(5): 574–583.
    • (2010) Clinical Trials , vol.7 , Issue.5 , pp. 574-583
    • Ruberg, S.J.1    Chen, L.2    Wang, Y.3
  • 9
    • 11844302840 scopus 로고    scopus 로고
    • Subgroup analysis in randomised controlled trials: importance, indications, and interpretation
    • Rothwell PM. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. The Lancet. 2005; 365(9454): 176–186.
    • (2005) The Lancet , vol.365 , Issue.9454 , pp. 176-186
    • Rothwell, P.M.1
  • 12
    • 80051894060 scopus 로고    scopus 로고
    • Subgroup identification based on differential effect search a recursive partitioning method for establishing response to treatment in patient subpopulations
    • Lipkovich I, Dmitrienko A, Denne J, Enas G. Subgroup identification based on differential effect search a recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine. 2011; 30(21): 2601–2621.
    • (2011) Statistics in Medicine , vol.30 , Issue.21 , pp. 2601-2621
    • Lipkovich, I.1    Dmitrienko, A.2    Denne, J.3    Enas, G.4
  • 13
    • 84920260494 scopus 로고    scopus 로고
    • A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment—subgroup interactions
    • Doove LL, Dusseldorp E, Van Deun K, Van Mechelen I. A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment—subgroup interactions. Advances in Data Analysis and Classification. 2014; 8(4): 403–425.
    • (2014) Advances in Data Analysis and Classification , vol.8 , Issue.4 , pp. 403-425
    • Doove, L.L.1    Dusseldorp, E.2    Van Deun, K.3    Van Mechelen, I.4
  • 14
    • 79953133534 scopus 로고    scopus 로고
    • Analysis of randomized comparative clinical trial data for personalized treatment selections
    • Cai T, Tian L, Wong PH, Wei LJ. Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics. 2011; 12(2): 270–282.
    • (2011) Biostatistics , vol.12 , Issue.2 , pp. 270-282
    • Cai, T.1    Tian, L.2    Wong, P.H.3    Wei, L.J.4
  • 16
    • 80053563163 scopus 로고    scopus 로고
    • Subgroup identification from randomized clinical trial data
    • Foster JC, Taylor JM, Ruberg SJ. Subgroup identification from randomized clinical trial data. Statistics in Medicine. 2011; 30(24): 2867–2880.
    • (2011) Statistics in Medicine , vol.30 , Issue.24 , pp. 2867-2880
    • Foster, J.C.1    Taylor, J.M.2    Ruberg, S.J.3
  • 18
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • Qian M, Murphy SA. Performance guarantees for individualized treatment rules. Annals of Statistics. 2011; 39(2): 1180–1210.
    • (2011) Annals of Statistics , vol.39 , Issue.2 , pp. 1180-1210
    • Qian, M.1    Murphy, S.A.2
  • 20
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • Zhang B, Tsiatis AA, Laber EB, Davidian M. A robust method for estimating optimal treatment regimes. Biometrics. 2012; 68(4): 1010–1018.
    • (2012) Biometrics , vol.68 , Issue.4 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 21
    • 84906088229 scopus 로고    scopus 로고
    • Estimating optimal treatment regimes from a classification perspective
    • Zhang B, Tsiatis AA, Davidian M, Zhang M, Laber E. Estimating optimal treatment regimes from a classification perspective. Statistic. 2012; 1(1): 103–114.
    • (2012) Statistic , vol.1 , Issue.1 , pp. 103-114
    • Zhang, B.1    Tsiatis, A.A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 22
    • 84941737703 scopus 로고    scopus 로고
    • Regularized outcome weighted subgroup identification for differential treatment effects
    • Xu Y, Yu M, Zhao YQ, Li Q, Wang S, Shao J. Regularized outcome weighted subgroup identification for differential treatment effects. Biometrics. 2015; 71(3): 645–653.
    • (2015) Biometrics , vol.71 , Issue.3 , pp. 645-653
    • Xu, Y.1    Yu, M.2    Zhao, Y.Q.3    Li, Q.4    Wang, S.5    Shao, J.6
  • 23
    • 84926625398 scopus 로고    scopus 로고
    • Simple subgroup approximations to optimal treatment regimes from randomized clinical trial data
    • Foster JC, Taylor JM, Kaciroti N, Nan B. Simple subgroup approximations to optimal treatment regimes from randomized clinical trial data. Biostatistics. 2015; 16(2): 368–382.
    • (2015) Biostatistics , vol.16 , Issue.2 , pp. 368-382
    • Foster, J.C.1    Taylor, J.M.2    Kaciroti, N.3    Nan, B.4
  • 24
    • 84869413638 scopus 로고    scopus 로고
    • Facilitating score and causal inference trees for large observational studies
    • Su X, Kang J, Fan J, Levine RA, Yan X. Facilitating score and causal inference trees for large observational studies. The Journal of Machine Learning Research. 2012; 13(1): 2955–2994.
    • (2012) The Journal of Machine Learning Research , vol.13 , Issue.1 , pp. 2955-2994
    • Su, X.1    Kang, J.2    Fan, J.3    Levine, R.A.4    Yan, X.5
  • 25
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983; 70(1): 41–55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 26
  • 27
    • 0001425735 scopus 로고
    • Recovery of information and adjustment for dependent censoring using surrogate markers
    • Robins JM, Rotnitzky A. Recovery of information and adjustment for dependent censoring using surrogate markers. Aids Epidemiology, Methodological issues. 1992; 3: 297–331.
    • (1992) Aids Epidemiology, Methodological issues , vol.3 , pp. 297-331
    • Robins, J.M.1    Rotnitzky, A.2
  • 29
    • 84874810512 scopus 로고    scopus 로고
    • Recent development on statistical methods for personalized medicine discovery
    • Zhao Y, Zeng D. Recent development on statistical methods for personalized medicine discovery. Frontiers of Medicine. 2013; 7(1): 102–110.
    • (2013) Frontiers of Medicine , vol.7 , Issue.1 , pp. 102-110
    • Zhao, Y.1    Zeng, D.2
  • 31
  • 34
    • 16844371130 scopus 로고    scopus 로고
    • A long-term comparison of pioglitazone and gliclazide in patients with type 2 diabetes mellitus: a randomized, double-blind, parallel-group comparison trial
    • Charbonnel BH, Matthews DR, Schernthaner G, Hanefeld M, Brunetti P. A long-term comparison of pioglitazone and gliclazide in patients with type 2 diabetes mellitus: a randomized, double-blind, parallel-group comparison trial. Diabetic Medicine. 2005; 22(4): 399–405.
    • (2005) Diabetic Medicine , vol.22 , Issue.4 , pp. 399-405
    • Charbonnel, B.H.1    Matthews, D.R.2    Schernthaner, G.3    Hanefeld, M.4    Brunetti, P.5
  • 35
    • 27644473876 scopus 로고    scopus 로고
    • Responder identification in clinical trials with censored data
    • Kehl V, Ulm K. Responder identification in clinical trials with censored data. Computational Statistics & Data Analysis. 2006; 50(5): 1338–1355.
    • (2006) Computational Statistics & Data Analysis , vol.50 , Issue.5 , pp. 1338-1355
    • Kehl, V.1    Ulm, K.2
  • 36
    • 84916228481 scopus 로고    scopus 로고
    • A prim approach to predictive-signature development for patient stratification
    • Chen G, Zhong H, Belousov A, Devanarayan V. A prim approach to predictive-signature development for patient stratification. Statistics in Medicine. 2015; 34(2): 317–342.
    • (2015) Statistics in Medicine , vol.34 , Issue.2 , pp. 317-342
    • Chen, G.1    Zhong, H.2    Belousov, A.3    Devanarayan, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.